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conTree-package Contrast and Boosted Trees

Description

Contrast trees represent a new approach for assessing the accuracy of many types of machine learn-
ing estimates that are not amenable to standard (cross) validation methods. In situations where
inaccuracies are detected, boosted contrast trees can often improve performance. Functions are pro-
vided to to build such trees in addition to a special case, distribution boosting, an assumption free
method for estimating the full probability distribution of an outcome variable given any set of joint
input predictor variable values.

Author(s)

Original code (C) by Jerome H. Friedman, minor modifications, formatting, and packaging by
Balasubramanian Narasimhan

References

Jerome Friedman (2019). Contrast Trees and Distribution Boosting https://arxiv.org/abs/
1912.03785

https://arxiv.org/abs/1912.03785
https://arxiv.org/abs/1912.03785
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age_data Age and Demographics data

Description

The data come from 9243 questionnaires filled out by shopping mall customers in the San Francisco
Bay Area (Impact Resources, Inc., Columbus, OH). Here we attempt to estimate a persons age as a
function of the other 13 demographic variables. For this data set age value is reported as being in
one of seven intervals {13-17, 18-24, 25-34, 35-44, 45-54, 55-64, >= 65}. Each persons
age is randomly generated uniformly within its corresponding reported interval. For the last interval
an exponential distribution was used with mean corresponding to life expectancy after reaching age
65.

Usage

age_data

Format

age_data:
A list of 3 items.

xage data frame of 8856 observations on 13 variables
yage Randomly generated age in the range above
gbage gradient boosting model for median age given x

Source

The Elements of Statistical Learning, Data Mining, Second Edition, by Hastie, Tibshirani, and
Friedman.

air_quality Air Quality Data from UC Irvine Machine Learning Repository

Description

The data set consists of hourly averaged measurements from an array of 5 metal oxide chemical
sensors embedded in an air quality chemical multisensor device. The outcome variable y is the
corresponding true hourly averaged concentration CO taken from a reference analyzer. The in-
put variables x are taken to be the corresponding hourly averaged measurements of the 13 other
quantities.

Usage

air_quality
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Format

air_quality:
A list with 4 items.

xco data frame of 9357 observations on 13 variables
yco hourly averaged CO concentration
zco sample membership indicator
pr2 probability propensity score

Source

https://archive.ics.uci.edu/ml/datasets/air+quality

census Census Data Example from UC Irvine Machine Learning Repository

Description

Includes a data frame of 1994 US census income from 48,842 people divided into a training set
of 32,561 and an independent test set of 16,281. The training outcome variable y (yt for test)
is binary and indicates whether or not a person’s income is greater than $50,000 per year. There
are 12 predictor variables x (xt for test) consisting of various demographic and financial properties
associated with each person. It also included estimates of Pr(y = 1|x) obtained by several machine
learning methods: gradient boosting on logistic scale using maximum likelihood (GBL), random
forest (RF), and gradient boosting on the probability scale (GBP) using least–squares.

Usage

census

Format

census:
A list of 10 items.

x training data frame of 32561 observations on 12 predictor variables
y training binary response whether salary is above $50K or not
xt test data frame of 16281 observations predictor variables
yt test binary response whether salary is above $50K or not
gbl training GBL response variable
gblt test GBL response variable
gbp training GBP response variable
gbpt test GBP response variable
rf training RF response probabilities
rft test GBP response probabilities

https://archive.ics.uci.edu/ml/datasets/air+quality
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Source

https://archive.ics.uci.edu/ml/datasets/census+income

contrast Build contrast tree

Description

Build contrast tree

Build boosted contrast tree model

Bootstrap contrast trees

Usage

contrast(
x,
y,
z,
w = rep(1, nrow(x)),
cat.vars = NULL,
not.used = NULL,
qint = 10,
xmiss = 9e+35,
tree.size = 10,
min.node = 500,
mode = c("onesamp", "twosamp"),
type = "dist",
pwr = 2,
quant = 0.5,
nclass = NULL,
costs = NULL,
cdfsamp = 500,
verbose = FALSE,
tree.store = 1e+06,
cat.store = 1e+05,
nbump = 1,
fnodes = 0.25,
fsamp = 1,
doprint = FALSE

)

modtrast(
x,
y,
z,
w = rep(1, nrow(x)),

https://archive.ics.uci.edu/ml/datasets/census+income
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cat.vars = NULL,
not.used = NULL,
qint = 10,
xmiss = 9e+35,
tree.size = 10,
min.node = 500,
learn.rate = 0.1,
type = c("dist", "diff", "class", "quant", "prob", "maxmean", "diffmean"),
pwr = 2,
quant = 0.5,
cdfsamp = 500,
verbose = FALSE,
tree.store = 1e+06,
cat.store = 1e+05,
nbump = 1,
fnodes = 0.25,
fsamp = 1,
doprint = FALSE,
niter = 100,
doplot = FALSE,
span = 0,
plot.span = 0.15,
print.itr = 10

)

bootcri(
x,
y,
z,
w = rep(1, nrow(x)),
cat.vars = NULL,
not.used = NULL,
qint = 10,
xmiss = 9e+35,
tree.size = 10,
min.node = 500,
mode = "onesamp",
type = "dist",
pwr = 2,
quant = 0.5,
nclass = NULL,
costs = NULL,
cdfsamp = 500,
verbose = FALSE,
tree.store = 1e+06,
cat.store = 1e+05,
nbump = 100,
fnodes = 1,
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fsamp = 1,
doprint = FALSE

)

Arguments

x training input predictor data matrix or data frame. Rows are observations and
columns are variables. Must be a numeric matrix or a data frame.

y vector, or matrix containing training data input outcome values or censoring
intervals for each observation. if y is a vector then it implies that y uncensored
outcome values or other contrasting quantity. If y is a matrix, then then y is
assumed to be censoring intervals for each observation; see details below

z vector containing values of a second contrasting quantity for each observation

w training observation weights

cat.vars vector of column labels (numbers or names) indicating categorical variables
(factors). All variables not so indicated are assumed to be orderable numeric;
see details below

not.used vector of column labels (numbers or names) indicating predictor variables not
to be used in the model

qint maximum number of split evaluation points on each predictor variable

xmiss missing value flag. Must be numeric and larger than any non missing predic-
tor/abs(response) variable value. Predictor variable values greater than or equal
to xmiss are regarded as missing. Predictor variable data values of NA are inter-
nally set to the value of xmiss and thereby regarded as missing

tree.size maximum number of terminal nodes in generated trees

min.node minimum number of training observations in each tree terminal node

mode indicating one or two-sample contrast; see details below for how it works with
type

type type of contrast; see details below for how it works with mode

pwr center split bias parameter. Larger values produce less center split bias.

quant specified quantile p (type=’quant’ only)

nclass number of classes (type =’class’ only) default=2

costs nclass by nclass misclassification cost matrix (type=’class’ only); default is
equal valued diagonal (error rate)

cdfsamp = maximum subsample size used to compute censored CDF (censoring only)

verbose a logical flag indicating print/don’t print censored CDF computation progress,
default FALSE

tree.store size of internal tree storage. Decrease value in response to memory allocation
error. Increase value for very large values of max.trees and/or tree.size, or in
response to diagnostic message or erratic program behavior

cat.store size of internal categorical value storage. Decrease value in response to memory
allocation error. Increase value for very large values of max.trees and/or tree.size
in the presence of many categorical variables (factors) with many levels, or in
response to diagnostic message or erratic program behavior
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nbump number of bootstrap replications

fnodes top fraction of node criteria used to evaluate trial bumped trees

fsamp fraction of observations used in each bootstrap sample for bumped trees

doprint logical flag TRUE/FALSE implies do/don’t plot iteration progress

learn.rate learning rate parameter in (0,1]

niter number of trees

doplot a flag to display/not display graphical plots

span span for qq-plot transformation smoother

plot.span running median smoother span for discrepancy plot (doplot = TRUE, only)

print.itr tree discrepancy printing iteration interval

Details

The varible xmiss is the missing value flag, Must be numeric and larger than any non missing
predictor/abs(response) variable value. Predictor variable values greater than or equal to xmiss are
regarded as missing. Predictor variable data values of NA are internally set to the value of xmiss and
thereby regarded as missing.

If the response y is a matrix, it is assumed to contain censoring intervals for each observation. Rows
are observations.

• First/second column are lower/upper boundary of censoring interval (Can be same value for
uncensored observations) respectively

• y[,1] = -xmiss implies outcome less than or equal to y[,2] (censored from above)

• y[,2] = xmiss implies outcome greater than or equal to y[,1]

Note that censoring is only allowed for type='dist'; see further below.

If x is a data frame and cat.vars (the columns indicating categorical variables), is missing, then
components of type factor are treated as categorical variables. Ordered factors should be input as
type numeric with appropriate numerical scores. If cat.vars is present it will over ride the data
frame typing.

The mode argument is either

• 'onesamp' (default) meaning one x-vector for each (x,z) pair

• 'twosamp' implies two-sample contrast with

– x are predictor variables for both samples
– y are outcomes for both samples
– z is sample identity flag with z < 0 implying first sample observations and z > 0, the

second sample observations. The type argument indicates the type of contrast. It can be
either a user defined function or a string. If mode is 'onesamp', the default,

• type = 'dist' (default) implies contrast distribution of y with that of z (y may be censored -
see above)

• type = 'diff' implies contrast joint paired values of y and z

• type = 'class' implies classification: contrast class labels y[i] and z[i] are two class labels
(in 1:nclass) for each observation.
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• type = 'prob' implies contrast predicted with empirical probabilities: y[i] = 0/1 and z[i]
is predicted probability P (y = 1) for i-th observation

• type = 'quant' is contrast predicted with empirical quantiles: y[i] is outcome value for
i-th observation and z[i] is predicted p-th quantile value (see below) for i-th observation
(0 < p < 1)

• type = 'diffmean' implies maximize absolute mean difference between y and z

• type = 'maxmean' implies maximize signed mean difference between y and z

When mode is 'twosamp'

• type= 'dist' (default) implies contrast y distributions of both samples

• type = 'diffmean' implies maximize absolute difference between means of two samples

• type = 'maxmean' maximize signed difference between means of two samples

When type is a function, it must be a function of three arguments f(y,z,w) where y and z are
double vectors and w is a weight vector, not necessarily normalized. The function should return a
double vector of length 1 as the result. See example below.

Value

a contrast model object use as input to interpretation procedures

a contrast model object to be used with predtrast()

a named list with out$bcri the bootstraped discrepancy values

Author(s)

Jerome H. Friedman

References

Jerome H. Friedman (2020). doi:10.1073/pnas.1921562117

Examples

data(census, package = "conTree")
dx <- 1:10000; dxt <- 10001:16281;
# Build contrast tree
tree <- contrast(census$xt[dx,], census$yt[dx], census$gblt[dx], type = 'prob')
# Summarize tree
treesum(tree)
# Get terminal node identifiers for regions containing observations 1 through 10
getnodes(tree, x = census$xt[1:10, ])
# Plot nodes
nodeplots(tree, x = census$xt[dx, ], y = census$yt[dx], z = census$gblt[dx])
# Summarize contrast tree against (precomputed) gradient boosting
# on logistic scale using maximum likelihood (GBL)
nodesum(tree, census$xt[dxt,], census$yt[dxt], census$gblt[dxt])
# Use a custom R discrepancy function to build a contrast tree
dfun <- function(y, z, w) {

w <- w / sum(w)

doi:10.1073/pnas.1921562117
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abs(sum(w * (y - z)))
}
tree2 <- contrast(census$xt[dx,], census$yt[dx], census$gblt[dx], type = dfun)
nodesum(tree2, census$xt[dxt,], census$yt[dxt], census$gblt[dxt])
# Generate lack of fit curve
lofcurve(tree, census$xt[dx,], census$yt[dx], census$gblt[dx])
# Build contrast tree boosting models
# Use small # of iterations for illustration (typically >= 200)
modgbl = modtrast(census$x, census$y, census$gbl, type = 'prob', niter = 10)
# Plot model accuracy as a function of iteration number
xval(modgbl, census$x, census$y, census$gbl, col = 'red')
# Produce predictions from modtrast() for new data.
ypred <- predtrast(modgbl, census$xt, census$gblt, num = modgbl$niter)
# Produce distribution boosting estimates
yhat <- predtrast(modgbl, census$xt, census$gblt, num = modgbl$niter)

getnodes Get terminal node observation assignments

Description

Get terminal node observation assignments

Usage

getnodes(tree, x)

Arguments

tree model object output from contrast() or prune()

x training input predictor data matrix or data frame in same format as in contrast()

Value

vector of tree terminal node identifiers (numbers) corresponding to each observation (row of x)

See Also

contrast()
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lofcurve Produce lack-of-fit curve for a contrast tree

Description

Produce lack-of-fit curve for a contrast tree

Usage

lofcurve(
tree,
x,
y,
z,
w = rep(1, length(y)),
doplot = "first",
col = "black",
ylim = NULL

)

Arguments

tree model object output from contrast() or prune()

x training input predictor data matrix or data frame in same format as in contrast()

y vector, or matrix containing training data input outcome values or censoring
intervals for each observation in same format as in contrast()

z vector containing values of a second contrasting quantity for each observation
in same observation format as in contrast ()

w observation weights

doplot logical flag. doplot="first" implies start new display. doplot="next" implies
super impose plot on existing display. doplot="none" implies no plot displayed.

col color of plotted curve

ylim y-axis limit

Value

a named list of plotted x and y points
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nodesum Summarize contrast tree

Description

Summarize contrast tree

Show graphical terminal node summaries

Usage

nodesum(tree, x, y, z, w = rep(1, nrow(x)), doplot = FALSE)

nodeplots(
tree,
x,
y,
z,
w = rep(1, nrow(x)),
nodes = NULL,
xlim = NULL,
ylim = NULL,
pts = "FALSE",
span = 0.15

)

Arguments

tree model object output from contrast() or prune()

x training input predictor data matrix or data frame in same format as in contrast()

y vector, or matrix containing training data input outcome values or censoring
intervals for each observation in same format as in contrast()

z vector containing values of a second contrasting quantity for each observation
in same observation format as in contrast()

w observation weights

doplot a flag to display/not display plots of output quantities

nodes selected tree terminal node identifiers. Default is all terminal nodes

xlim x-axis limit

ylim y-axis limit

pts logical flag indicating whether to show y-values as circles/points (type = 'pp'
only)

span running median smoother span (type = 'diff' only)
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Details

The graphical representations of terminal node contrasts depend on the tree type graphical repre-
sentations of terminal node contrasts depending on tree type -type = 'dist' implies CDFs of y
and z in each terminal node. (Only top nine nodes are shown). Note that y can be censored (see
above) -type = 'diff' implies plot y versus z in each terminal node. (Only top nine nodes are
shown). -type = 'class' implies barplot of misclassification risk (upper) amd total weight (lower)
in each terminal node -type = 'prob' implies upper barplot contrasting empirical (blue) and pre-
dicted (red) p(y = 1) in each terminal node. Lower barplot showing total weight in each terminal
node.

• type = ’quant’ => upper barplot of fraction of y-values greater than or equal to corresponding
z-values (quantile prediction) in each terminal node. Horizontal line reflects specified target
quantile. Lower barplot showing total weight in each terminal node.

• type = 'diffmean' or type = 'maxmean' implies upper barplot contrasting y-mean (blue)
and z-mean (red) in each terminal node. Lower barplot showing total weight in each terminal
node.

Value

a named list of four items:

• nodes the tree terminal node identifiers

• cri the terminal node criterion values (depends on contrast type see above)

• wt sum of weights in each terminal node

• avecri weighted criterion average over all terminal nodes

See Also

contrast()

onesample_parameters Return the one sample parameters used in fortran discrepancy func-
tions

Description

These functions are mostly useful when one wants to test one’s own discrepancy function in R f(y,
z, w) to determine if the results are correct. So a natural test is to experiment by programming
one of the already implemented discrepancy functions in R. However, the Fortran implementations
of such discrepancy measures use some parameters in the computations and therefore the returned
results from a simple R implementation may not exactly match. Using these parameters, one can
ensure that they do. These are to be interpreted as follows. For one sample, the type = "dist"
implementation in the package returns 0 if the length of y is less than nmin which is (100L). The
eps = 1.0e-5 parameter is used to ensure that the denominator in the formula for the Anderson-
Darling statistic is at least eps. Next, for type = "prob", if the length of the vector is less than nmin
= 20 the discrepancy is computed to be 0. And so on. Refer to the R and Fortran source for further
details as this is an advanced topic.
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Usage

onesample_parameters()

twosample_parameters()

Value

a named list for each of the types.

predtrast Predict y-values from boosted contrast model

Description

Predict y-values from boosted contrast model

Usage

predtrast(model, x, z, num = model$niter)

Arguments

model model object output from modtrast()

x x-values for new data

z z-values for new data

num number of trees used to compute model values

Value

predicted y-values for new data from model

See Also

contrast()
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prune Prune a contrast tree

Description

Prune a contrast tree

Usage

prune(tree, thr = 0.1)

Arguments

tree a tree model object output from contrast

thr a split improvement threshold, default is 0.1

Value

a bottom-up pruned tree with splits corresponding to improvement less than threshold thr removed

prune.seq Show all possible pruned subtrees

Description

Show all possible pruned subtrees

Usage

prune.seq(tree, eps = 0.01, plot.it = TRUE)

Arguments

tree a tree model object output from contrast

eps small increment defining grid of threshold values

plot.it a logical flag indicating plot/don’t plot of number of nodes versus threshold
value for all pruned subtrees, default TRUE

Value

a named list of two items:

• thr a set of threshold values that sequentially reduce tree size

• nodes the corresponding tree sizes (number of terminal nodes)



16 treesum

save_rfun Save the function f for calling from fortran

Description

Save the function f for calling from fortran

Usage

save_rfun(f)

Arguments

f the R function to be called using .Fortran

Value

TRUE, invisibly.

treesum Print terminal node x-region boundaries

Description

Print terminal node x-region boundaries

Usage

treesum(tree, nodes = NULL)

Arguments

tree model object output from contrast() or prune()
nodes vector of terminal node identifiers for the tree specifying the desired regions.

The default is all terminal nodes.

Details

The predictor variable x-boundaries defining each terminal node are printed.

For numeric variables: variable | sign | value

• sign + => value=lower boundary on variable
• sign - => value upper boundary on variable

For categorical variables: cat variable | sign | set of values

• sign + => values in node
• sign - => values not in node (compliment values in node) graphical representations of terminal

node contrasts depend on the tree type
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Value

No return value (invisble NULL)

See Also

contrast()

xval Cross-validate boosted contrast tree boosted with (new) data

Description

Cross-validate boosted contrast tree boosted with (new) data

Usage

xval(
mdl,
x,
y,
z,
num = length(mdl$tree),
del = 10,
span = 0.15,
ylab = "Average Discrepancy",
doplot = "first",
doprint = FALSE,
col = "red"

)

Arguments

mdl model output from modtrast()

x data predictor variables is same format as input to modtrast

y data y values is same format as input to modtrast

z data z values is same format as input to modtrast

num number of trees used to compute model values

del plot discrepancy value computed every del-th iteration (tree)

span running median smoother span (doplot=TRUE, only)

ylab graphical parameter (‘doplot="first", only)

doplot logical flag. doplot="first" implies start new display. doplot="next" implies
super impose plot on existing display. doplot="none" implies no plot displayed.

doprint logical flag TRUE/FALSE implies do/don’t print progress while executing, default
FALSE

col color of plotted curve
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Value

a named list of two items: ntree the iteration numbers, and error the corresponding discrepancy
values

See Also

contrast()

ydist Transform z-values t(z) such that the distribution of p(t(z)|x) approx-
imates p(t(y|x) for type = ’dist’ only

Description

Transform z-values t(z) such that the distribution of p(t(z)|x) approximates p(t(y|x) for type =
’dist’ only

Usage

ydist(model, x, z, num = model$niter)

Arguments

model model object output from modtrast()

x vector of predictor variable values for a (single) observation

z sample of z-values drawn from p(z|x)
num number of trees used to compute model values

Value

vector of length(z) containing transformed values t(z) approximating p(y|x)

See Also

contrast()
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