
Package: multiview (via r-universe)
September 2, 2024

Type Package

Title Cooperative Learning for Multi-View Analysis

Version 0.8

Date 2023-03-30

VignetteBuilder knitr

Depends R (>= 3.5.0)

Description Cooperative learning combines the usual squared error loss
of predictions with an agreement penalty to encourage the
predictions from different data views to agree. By varying the
weight of the agreement penalty, we get a continuum of
solutions that include the well-known early and late fusion
approaches. Cooperative learning chooses the degree of
agreement (or fusion) in an adaptive manner, using a validation
set or cross-validation to estimate test set prediction error.
In the setting of cooperative regularized linear regression,
the method combines the lasso penalty with the agreement
penalty (Ding, D., Li, S., Narasimhan, B., Tibshirani, R.
(2021) <doi:10.1073/pnas.2202113119>).

License GPL-2

Encoding UTF-8

RoxygenNote 7.2.3

SystemRequirements C++17

Suggests knitr, rmarkdown, testthat (>= 3.0.0), xfun

Imports glmnet, Matrix, methods, RColorBrewer, Rcpp, stats, survival,
utils

Config/testthat/edition 3

LinkingTo Rcpp, RcppEigen

NeedsCompilation yes

Author Daisy Yi Ding [aut], Robert J. Tibshirani [aut],
Balasubramanian Narasimhan [aut, cre], Trevor Hastie [aut],
Kenneth Tay [aut], James Yang [aut]

1

https://doi.org/10.1073/pnas.2202113119

2 Contents

Maintainer Balasubramanian Narasimhan <naras@stanford.edu>

Date/Publication 2023-03-31 20:10:02 UTC

Repository https://bnaras.r-universe.dev

RemoteUrl https://github.com/cran/multiview

RemoteRef HEAD

RemoteSha 71b29d26057900706c2bf654a6fd919ac80ee442

Contents
multiview-package . 3
coef.cv.multiview . 3
coef.multiview . 4
coef_ordered . 5
coef_ordered.cv.multiview . 6
coef_ordered.multiview . 7
collapse_named_lists . 9
cox_obj_function . 9
cv.multiview . 10
dev_function . 14
elnet.fit . 15
get_cox_lambda_max . 17
get_eta . 18
get_start . 19
make_row . 20
multiview . 20
multiview.control . 25
multiview.cox.fit . 26
multiview.cox.path . 29
multiview.fit . 33
multiview.path . 36
obj_function . 39
pen_function . 40
plot.multiview . 41
predict.cv.multiview . 42
predict.multiview . 43
reshape_x_to_xlist . 45
response.coxnet . 45
select_matrix_list_columns . 46
to_nvar_index . 46
to_xlist_index . 47
view.contribution . 47
weighted_mean_sd . 50

Index 51

multiview-package 3

multiview-package Cooperative learning for multiple views using generalized linear mod-
els

Description

This package performs a version of early and late fusion of multiple views using penalized gener-
alized regression.

coef.cv.multiview Extract coefficients from a cv.multiview object

Description

Extract coefficients from a cv.multiview object

Usage

S3 method for class 'cv.multiview'
coef(object, s = c("lambda.1se", "lambda.min"), ...)

Arguments

object Fitted "cv.multiview" object.

s Value(s) of the penalty parameter lambda at which predictions are required. De-
fault is the value s="lambda.1se" stored on the CV object. Alternatively
s="lambda.min" can be used. If s is numeric, it is taken as the value(s) of
lambda to be used. (For historical reasons we use the symbol ’s’ rather than
’lambda’ to reference this parameter.)

... This is the mechanism for passing arguments like x= when exact=TRUE; see
exact argument.

Value

the matrix of coefficients for specified lambda.

Examples

set.seed(1)
x = matrix(rnorm(100*20), 100, 20)
z = matrix(rnorm(100*20), 100, 20)
U = matrix(rnorm(100*5), 100, 5)
for (m in seq(5)){

u = rnorm(100)
x[, m] = x[, m] + u
z[, m] = z[, m] + u

4 coef.multiview

U[, m] = U[, m] + u}
x = scale(x, center = TRUE, scale = FALSE)
z = scale(z, center = TRUE, scale = FALSE)
beta_U = c(rep(0.1, 5))
y = U %*% beta_U + 0.1 * rnorm(100)
fit1 = cv.multiview(list(x=x,z=z), y, rho = 0.3)
coef(fit1, s="lambda.min")

Binomial

by = 1 * (y > median(y))
fit2 = cv.multiview(list(x=x,z=z), by, family = binomial(), rho = 0.9)
coef(fit2, s="lambda.min")

Poisson
py = matrix(rpois(100, exp(y)))
fit3 = cv.multiview(list(x=x,z=z), py, family = poisson(), rho = 0.6)
coef(fit3, s="lambda.min")

coef.multiview Extract coefficients from a multiview object

Description

Extract coefficients from a multiview object

Usage

S3 method for class 'multiview'
coef(object, s = NULL, ...)

Arguments

object Fitted "multiview" object.

s Value(s) of the penalty parameter lambda at which predictions are required. De-
fault is the entire sequence used to create the model.

... This is the mechanism for passing arguments like x= when exact=TRUE; see
exact argument.

Value

a matrix of coefficients for specified lambda.

coef_ordered 5

Examples

Gaussian
x = matrix(rnorm(100 * 20), 100, 20)
z = matrix(rnorm(100 * 10), 100, 10)
y = rnorm(100)
fit1 = multiview(list(x=x,z=z), y, rho = 0)
coef(fit1, s=0.1)

Binomial
by = sample(c(0,1), 100, replace = TRUE)
fit2 = multiview(list(x=x,z=z), by, family = binomial(), rho=0.5)
coef(fit2, s=0.1)

Poisson
py = matrix(rpois(100, exp(y)))
fit3 = multiview(list(x=x,z=z), py, family = poisson(), rho=0.5)
coef(fit3, s=0.1)

coef_ordered Extract an ordered list of standardized coefficients from a multiview
or cv.multiview object

Description

This function extracts a ranked list of coefficients after the coefficients are standardized by the
standard deviation of the corresponding features. The ranking is based on the magnitude of the
standardized coefficients. It also outputs the data view to which each coefficient belongs.

Usage

coef_ordered(object, ...)

Arguments

object Fitted "multiview" or "cv.multiview" object. coefficients are required.

... This is the mechanism for passing arguments like x= when exact=TRUE; see
exact argument.

Details

The output table shows from left to right the data view each coefficient comes from, the column
index of the feature in the corresponding data view, the coefficient after being standardized by the
standard deviation of the corresponding feature, and the original fitted coefficient.

Value

data frame of consisting of view name, view column, coefficient and standardized coefficient or-
dered by rank of standardized coefficient.

6 coef_ordered.cv.multiview

Examples

Gaussian
x = matrix(rnorm(100 * 20), 100, 20)
z = matrix(rnorm(100 * 10), 100, 10)
y = rnorm(100)
fit1 = multiview(list(x=x,z=z), y, rho = 0)
coef_ordered(fit1, s=0.1)

Binomial
by = sample(c(0,1), 100, replace = TRUE)
fit2 = multiview(list(x=x,z=z), by, family = binomial(), rho=0.5)
coef_ordered(fit2, s=0.1)

Poisson
py = matrix(rpois(100, exp(y)))
fit3 = multiview(list(x=x,z=z), py, family = poisson(), rho=0.5)
coef_ordered(fit3, s=0.1)

coef_ordered.cv.multiview

Extract an ordered list of standardized coefficients from a cv.multiview
object

Description

This function extracts a ranked list of coefficients after the coefficients are standardized by the
standard deviation of the corresponding features. The ranking is based on the magnitude of the
standardized coefficients. It also outputs the data view to which each coefficient belongs.

Usage

S3 method for class 'cv.multiview'
coef_ordered(object, s = c("lambda.1se", "lambda.min"), ...)

Arguments

object Fitted "cv.multiview" object.

s Value(s) of the penalty parameter lambda at which predictions are required. De-
fault is the value s="lambda.1se" stored on the CV object. Alternatively
s="lambda.min" can be used. If s is numeric, it is taken as the value(s) of
lambda to be used. (For historical reasons we use the symbol ’s’ rather than
’lambda’ to reference this parameter.)

... This is the mechanism for passing arguments like x= when exact=TRUE; see
exact argument.

coef_ordered.multiview 7

Details

The output table shows from left to right the data view each coefficient comes from, the column
index of the feature in the corresponding data view, the coefficient after being standardized by the
standard deviation of the corresponding feature, and the original fitted coefficient.

Value

data frame of consisting of view name, view column, coefficient and standardized coefficient or-
dered by rank of standardized coefficient.

Examples

set.seed(1)
x = matrix(rnorm(100*20), 100, 20)
z = matrix(rnorm(100*20), 100, 20)
U = matrix(rnorm(100*5), 100, 5)
for (m in seq(5)){

u = rnorm(100)
x[, m] = x[, m] + u
z[, m] = z[, m] + u
U[, m] = U[, m] + u}

x = scale(x, center = TRUE, scale = FALSE)
z = scale(z, center = TRUE, scale = FALSE)
beta_U = c(rep(0.1, 5))
y = U %*% beta_U + 0.1 * rnorm(100)
fit1 = cv.multiview(list(x=x,z=z), y, rho = 0.3)
coef_ordered(fit1, s="lambda.min")

Binomial

by = 1 * (y > median(y))
fit2 = cv.multiview(list(x=x,z=z), by, family = binomial(), rho = 0.9)
coef_ordered(fit2, s="lambda.min")

Poisson
py = matrix(rpois(100, exp(y)))
fit3 = cv.multiview(list(x=x,z=z), py, family = poisson(), rho = 0.6)
coef_ordered(fit3, s="lambda.min")

coef_ordered.multiview

Extract an ordered list of standardized coefficients from a multiview
object

Description

This function extracts a ranked list of coefficients after the coefficients are standardized by the
standard deviation of the corresponding features. The ranking is based on the magnitude of the
standardized coefficients. It also outputs the data view to which each coefficient belongs.

8 coef_ordered.multiview

Usage

S3 method for class 'multiview'
coef_ordered(object, s = NULL, ...)

Arguments

object Fitted "multiview" object.

s Value(s) of the penalty parameter lambda at which coefficients are required.

... This is the mechanism for passing arguments like x= when exact=TRUE; see
exact argument.

Details

The output table shows from left to right the data view each coefficient comes from, the column
index of the feature in the corresponding data view, the coefficient after being standardized by the
standard deviation of the corresponding feature, and the original fitted coefficient.

Value

data frame of consisting of view name, view column, coefficient and standardized coefficient or-
dered by rank of standardized coefficient.

Examples

Gaussian
x = matrix(rnorm(100 * 20), 100, 20)
z = matrix(rnorm(100 * 10), 100, 10)
y = rnorm(100)
fit1 = multiview(list(x=x,z=z), y, rho = 0)
coef_ordered(fit1, s=0.1)

Binomial
by = sample(c(0,1), 100, replace = TRUE)
fit2 = multiview(list(x=x,z=z), by, family = binomial(), rho=0.5)
coef_ordered(fit2, s=0.1)

Poisson
py = matrix(rpois(100, exp(y)))
fit3 = multiview(list(x=x,z=z), py, family = poisson(), rho=0.5)
coef_ordered(fit3, s=0.1)

collapse_named_lists 9

collapse_named_lists Collapse a list of named lists into one list with the same name

Description

Collapse a list of named lists into one list with the same name

Usage

collapse_named_lists(in_list)

Arguments

in_list a list of named lists all with same names (not checked for efficiency)

Value

a single list with named components all concatenated

cox_obj_function Elastic net objective function value for Cox regression model

Description

Returns the elastic net objective function value for Cox regression model.

Usage

cox_obj_function(
y,
pred,
weights,
lambda,
alpha,
coefficients,
vp,
view_components,
rho

)

10 cv.multiview

Arguments

y Survival response variable, must be a Surv or stratifySurv object.

pred Model’s predictions for y.

weights Observation weights.

lambda A single value for the lambda hyperparameter.

alpha The elasticnet mixing parameter, with 0 ≤ α ≤ 1.

coefficients The model’s coefficients.

vp Penalty factors for each of the coefficients.

view_components

a list of lists containing indices of coefficients and associated covariate (view)
pairs

rho the fusion parameter

cv.multiview Perform k-fold cross-validation for cooperative learning

Description

Does k-fold cross-validation (CV) for multiview and produces a CV curve.

Usage

cv.multiview(
x_list,
y,
family = gaussian(),
rho = 0,
weights = NULL,
offset = NULL,
lambda = NULL,
type.measure = c("default", "mse", "deviance", "class", "auc", "mae", "C"),
nfolds = 10,
foldid = NULL,
alignment = c("lambda", "fraction"),
grouped = TRUE,
keep = FALSE,
trace.it = 0,
...

)

cv.multiview 11

Arguments

x_list a list of x matrices with same number of rows nobs

y the quantitative response with length equal to nobs, the (same) number of rows
in each x matrix

family A description of the error distribution and link function to be used in the model.
This is the result of a call to a family function. Default is stats::gaussian. (See
stats::family for details on family functions.)

rho the weight on the agreement penalty, default 0. rho=0 is a form of early fusion,
and rho=1 is a form of late fusion. We recommend trying a few values of rho
including 0, 0.1, 0.25, 0.5, and 1 first; sometimes rho larger than 1 can also be
helpful.

weights Observation weights; defaults to 1 per observation

offset Offset vector (matrix) as in multiview

lambda A user supplied lambda sequence, default NULL. Typical usage is to have the
program compute its own lambda sequence. This sequence, in general, is dif-
ferent from that used in the glmnet::glmnet() call (named lambda). Note that
this is done for the full model (master sequence), and separately for each fold.
The fits are then aligned using the glmnet lambda sequence associated with the
master sequence (see the alignment argument for additional details). Adapting
lambda for each fold leads to better convergence. When lambda is supplied, the
same sequence is used everywhere, but in some GLMs can lead to convergence
issues.

type.measure loss to use for cross-validation. Currently five options, not all available for all
models. The default is type.measure="deviance", which uses squared-error
for gaussian models (a.k.a type.measure="mse" there), deviance for logistic
and poisson regression, and partial-likelihood for the Cox model. type.measure="class"
applies to binomial and multinomial logistic regression only, and gives misclas-
sification error. type.measure="auc" is for two-class logistic regression only,
and gives area under the ROC curve. type.measure="mse" or type.measure="mae"
(mean absolute error) can be used by all models except the "cox"; they measure
the deviation from the fitted mean to the response. type.measure="C" is Har-
rel’s concordance measure, only available for cox models.

nfolds number of folds - default is 10. Although nfolds can be as large as the sample
size (leave-one-out CV), it is not recommended for large datasets. Smallest
value allowable is nfolds=3

foldid an optional vector of values between 1 and nfold identifying what fold each
observation is in. If supplied, nfold can be missing.

alignment This is an experimental argument, designed to fix the problems users were hav-
ing with CV, with possible values "lambda" (the default) else "fraction". With
"lambda" the lambda values from the master fit (on all the data) are used to line
up the predictions from each of the folds. In some cases this can give strange
values, since the effective lambda values in each fold could be quite different.
With "fraction" we line up the predictions in each fold according to the frac-
tion of progress along the regularization. If in the call a lambda argument is also
provided, alignment="fraction" is ignored (with a warning).

12 cv.multiview

grouped This is an experimental argument, with default TRUE, and can be ignored by most
users. For all models except the "cox", this refers to computing nfolds separate
statistics, and then using their mean and estimated standard error to describe the
CV curve. If grouped=FALSE, an error matrix is built up at the observation level
from the predictions from the nfold fits, and then summarized (does not apply
to type.measure="auc"). For the "cox" family, grouped=TRUE obtains the CV
partial likelihood for the Kth fold by subtraction; by subtracting the log partial
likelihood evaluated on the full dataset from that evaluated on the on the (K-1)/K
dataset. This makes more efficient use of risk sets. With grouped=FALSE the log
partial likelihood is computed only on the Kth fold

keep If keep=TRUE, a prevalidated array is returned containing fitted values for each
observation and each value of lambda. This means these fits are computed with
this observation and the rest of its fold omitted. The foldid vector is also re-
turned. Default is keep=FALSE.

trace.it If trace.it=1, then progress bars are displayed; useful for big models that take
a long time to fit.

... Other arguments that can be passed to multiview

Details

The current code can be slow for "large" data sets, e.g. when the number of features is larger than
1000. It can be helpful to see the progress of multiview as it runs; to do this, set trace.it = 1 in the
call to multiview or cv.multiview. With this, multiview prints out its progress along the way. One
can also pre-filter the features to a smaller set, using the exclude option, with a filter function.

If there are missing values in the feature matrices: we recommend that you center the columns of
each feature matrix, and then fill in the missing values with 0.

For example,
x <- scale(x,TRUE,FALSE)
x[is.na(x)] <- 0
z <- scale(z,TRUE,FALSE)
z[is.na(z)] <- 0

Then run multiview in the usual way. It will exploit the assumed shared latent factors to make
efficient use of the available data.

The function runs multiview nfolds+1 times; the first to get the lambda sequence, and then the
remainder to compute the fit with each of the folds omitted. The error is accumulated, and the
average error and standard deviation over the folds is computed. Note that cv.multiview does
NOT search for values for rho. A specific value should be supplied, else rho=0 is assumed by
default. If users would like to cross-validate rho as well, they should call cv.multiview with a
pre-computed vector foldid, and then use this same fold vector in separate calls to cv.multiview
with different values of rho.

Value

an object of class "cv.multiview" is returned, which is a list with the ingredients of the cross-
validation fit.

cv.multiview 13

lambda the values of lambda used in the fits.

cvm The mean cross-validated error - a vector of length length(lambda).

cvsd estimate of standard error of cvm.

cvup upper curve = cvm+cvsd.

cvlo lower curve = cvm-cvsd.

nzero number of non-zero coefficients at each lambda.

name a text string indicating type of measure (for plotting purposes).

multiview.fit a fitted multiview object for the full data.

lambda.min value of lambda that gives minimum cvm.

lambda.1se largest value of lambda such that error is within 1 standard error of the mini-
mum.

fit.preval if keep=TRUE, this is the array of prevalidated fits. Some entries can be NA, if
that and subsequent values of lambda are not reached for that fold

foldid if keep=TRUE, the fold assignments used

index a one column matrix with the indices of lambda.min and lambda.1se in the
sequence of coefficients, fits etc.

Examples

Gaussian
Generate data based on a factor model
set.seed(1)
x = matrix(rnorm(100*20), 100, 20)
z = matrix(rnorm(100*20), 100, 20)
U = matrix(rnorm(100*5), 100, 5)
for (m in seq(5)){

u = rnorm(100)
x[, m] = x[, m] + u
z[, m] = z[, m] + u
U[, m] = U[, m] + u}

x = scale(x, center = TRUE, scale = FALSE)
z = scale(z, center = TRUE, scale = FALSE)
beta_U = c(rep(0.1, 5))
y = U %*% beta_U + 0.1 * rnorm(100)
fit1 = cv.multiview(list(x=x,z=z), y, rho = 0.3)

plot the cross-validation curve
plot(fit1)

extract coefficients
coef(fit1, s="lambda.min")

extract ordered coefficients
coef_ordered(fit1, s="lambda.min")

make predictions
predict(fit1, newx = list(x[1:5,],z[1:5,]), s = "lambda.min")

14 dev_function

Binomial

by = 1 * (y > median(y))
fit2 = cv.multiview(list(x=x,z=z), by, family = binomial(), rho = 0.9)
predict(fit2, newx = list(x[1:5,],z[1:5,]), s = "lambda.min", type = "response")
plot(fit2)
coef(fit2, s="lambda.min")
coef_ordered(fit2, s="lambda.min")

Poisson
py = matrix(rpois(100, exp(y)))
fit3 = cv.multiview(list(x=x,z=z), py, family = poisson(), rho = 0.6)
predict(fit3, newx = list(x[1:5,],z[1:5,]), s = "lambda.min", type = "response")
plot(fit3)
coef(fit3, s="lambda.min")
coef_ordered(fit3, s="lambda.min")

dev_function Elastic net deviance value

Description

Returns the elastic net deviance value.

Usage

dev_function(y, mu, weights, family)

Arguments

y Quantitative response variable.

mu Model’s predictions for y.

weights Observation weights.

family A description of the error distribution and link function to be used in the model.
This is the result of a call to a family function.

elnet.fit 15

elnet.fit Solve weighted least squares (WLS) problem for a single lambda value

Description

Solves the weighted least squares (WLS) problem for a single lambda value. Internal function that
users should not call directly.

Usage

elnet.fit(
x,
y,
weights,
lambda,
alpha = 1,
intercept = TRUE,
thresh = 1e-07,
maxit = 1e+05,
penalty.factor = rep(1, nvars),
exclude = c(),
lower.limits = -Inf,
upper.limits = Inf,
warm = NULL,
from.glmnet.fit = FALSE,
save.fit = FALSE

)

Arguments

x Input matrix, of dimension nobs x nvars; each row is an observation vector. If it
is a sparse matrix, it is assumed to be unstandardized. It should have attributes xm
and xs, where xm(j) and xs(j) are the centering and scaling factors for variable
j respsectively. If it is not a sparse matrix, it is assumed that any standardization
needed has already been done.

y Quantitative response variable.

weights Observation weights. elnet.fit does NOT standardize these weights.

lambda A single value for the lambda hyperparameter.

alpha The elasticnet mixing parameter, with 0 ≤ α ≤ 1. The penalty is defined as

(1− α)/2||β||22 + α||β||1.

alpha=1 is the lasso penalty, and alpha=0 the ridge penalty.

intercept Should intercept be fitted (default=TRUE) or set to zero (FALSE)?

16 elnet.fit

thresh Convergence threshold for coordinate descent. Each inner coordinate-descent
loop continues until the maximum change in the objective after any coefficient
update is less than thresh times the null deviance. Default value is 1e-7.

maxit Maximum number of passes over the data; default is 10^5. (If a warm start
object is provided, the number of passes the warm start object performed is
included.)

penalty.factor Separate penalty factors can be applied to each coefficient. This is a number
that multiplies lambda to allow differential shrinkage. Can be 0 for some vari-
ables, which implies no shrinkage, and that variable is always included in the
model. Default is 1 for all variables (and implicitly infinity for variables listed
in exclude). Note: the penalty factors are internally rescaled to sum to nvars.

exclude Indices of variables to be excluded from the model. Default is none. Equivalent
to an infinite penalty factor.

lower.limits Vector of lower limits for each coefficient; default -Inf. Each of these must be
non-positive. Can be presented as a single value (which will then be replicated),
else a vector of length nvars.

upper.limits Vector of upper limits for each coefficient; default Inf. See lower.limits.

warm Either a glmnetfit object or a list (with names beta and a0 containing coeffi-
cients and intercept respectively) which can be used as a warm start. Default is
NULL, indicating no warm start. For internal use only.

from.glmnet.fit

Was elnet.fit() called from glmnet.fit()? Default is FALSE.This has im-
plications for computation of the penalty factors.

save.fit Return the warm start object? Default is FALSE.

Details

WARNING: Users should not call elnet.fit directly. Higher-level functions in this package call
elnet.fit as a subroutine. If a warm start object is provided, some of the other arguments in the
function may be overriden.

elnet.fit is essentially a wrapper around a C++ subroutine which minimizes

1/2
∑

wi(yi −XT
i β)

2 +
∑

λγj [(1− α)/2β2 + α|β|],

over β, where γj is the relative penalty factor on the jth variable. If intercept = TRUE, then the
term in the first sum is wi(yi − β0 −XT

i β)
2, and we are minimizing over both β0 and β.

None of the inputs are standardized except for penalty.factor, which is standardized so that they
sum up to nvars.

Value

An object with class "glmnetfit" and "glmnet". The list returned has the same keys as that of a
glmnet object, except that it might have an additional warm_fit key.

a0 Intercept value.

beta A nvars x 1 matrix of coefficients, stored in sparse matrix format.

get_cox_lambda_max 17

df The number of nonzero coefficients.

dim Dimension of coefficient matrix.

lambda Lambda value used.

dev.ratio The fraction of (null) deviance explained. The deviance calculations incorporate
weights if present in the model. The deviance is defined to be 2*(loglike_sat -
loglike), where loglike_sat is the log-likelihood for the saturated model (a model
with a free parameter per observation). Hence dev.ratio=1-dev/nulldev.

nulldev Null deviance (per observation). This is defined to be 2*(loglike_sat -loglike(Null)).
The null model refers to the intercept model.

npasses Total passes over the data.

jerr Error flag, for warnings and errors (largely for internal debugging).

offset Always FALSE, since offsets do not appear in the WLS problem. Included for
compability with glmnet output.

call The call that produced this object.

nobs Number of observations.

warm_fit If save.fit=TRUE, output of C++ routine, used for warm starts. For internal use
only.

get_cox_lambda_max Get lambda max for Cox regression model

Description

Return the lambda max value for Cox regression model, used for computing initial lambda values.
For internal use only.

Usage

get_cox_lambda_max(
x,
y,
alpha,
weights = rep(1, nrow(x)),
offset = rep(0, nrow(x)),
exclude = c(),
vp = rep(1, ncol(x))

)

Arguments

x Input matrix, of dimension nobs x nvars; each row is an observation vector. If it
is a sparse matrix, it is assumed to be unstandardized. It should have attributes xm
and xs, where xm(j) and xs(j) are the centering and scaling factors for variable
j respsectively. If it is not a sparse matrix, it is assumed to be standardized.

18 get_eta

y Survival response variable, must be a Surv or stratifySurv object.

alpha The elasticnet mixing parameter, with 0 ≤ α ≤ 1.

weights Observation weights.

offset Offset for the model. Default is a zero vector of length nrow(y).

exclude Indices of variables to be excluded from the model.

vp Separate penalty factors can be applied to each coefficient.

Details

This function is called by cox.path for the value of lambda max.

When x is not sparse, it is expected to already by centered and scaled. When x is sparse, the function
will get its attributes xm and xs for its centering and scaling factors. The value of lambda_max
changes depending on whether x is centered and scaled or not, so we need xm and xs to get the
correct value.

get_eta Helper function to get etas (linear predictions)

Description

Given x, coefficients and intercept, return linear predictions. Wrapper that works with both regular
and sparse x. Only works for single set of coefficients and intercept.

Usage

get_eta(x, beta, a0)

Arguments

x Input matrix, of dimension nobs x nvars; each row is an observation vector. If it
is a sparse matrix, it is assumed to be unstandardized. It should have attributes xm
and xs, where xm(j) and xs(j) are the centering and scaling factors for variable
j respsectively. If it is not a sparse matrix, it is assumed to be standardized.

beta Feature coefficients.

a0 Intercept.

get_start 19

get_start Get null deviance, starting mu and lambda max

Description

Return the null deviance, starting mu and lambda max values for initialization. For internal use
only.

Usage

get_start(
x,
y,
weights,
family,
intercept,
is.offset,
offset,
exclude,
vp,
alpha

)

Arguments

x Input matrix, of dimension nobs x nvars; each row is an observation vector. If it
is a sparse matrix, it is assumed to be unstandardized. It should have attributes xm
and xs, where xm(j) and xs(j) are the centering and scaling factors for variable
j respsectively. If it is not a sparse matrix, it is assumed to be standardized.

y Quantitative response variable.

weights Observation weights.

family A description of the error distribution and link function to be used in the model.
This is the result of a call to a family function. (See family for details on family
functions.)

intercept Does the model we are fitting have an intercept term or not?

is.offset Is the model being fit with an offset or not?

offset Offset for the model. If is.offset=FALSE, this should be a zero vector of the
same length as y.

exclude Indices of variables to be excluded from the model.

vp Separate penalty factors can be applied to each coefficient.

alpha The elasticnet mixing parameter, with 0 ≤ α ≤ 1.

20 multiview

Details

This function is called by glmnet.path for null deviance, starting mu and lambda max values. It is
also called by glmnet.fit when used without warmstart, but they only use the null deviance and
starting mu values.

When x is not sparse, it is expected to already by centered and scaled. When x is sparse, the function
will get its attributes xm and xs for its centering and scaling factors.

Note that whether x is centered & scaled or not, the values of mu and nulldev don’t change. How-
ever, the value of lambda_max does change, and we need xm and xs to get the correct value.

make_row Build a block row matrix for multiview

Description

Build a block row matrix for multiview

Usage

make_row(x_list, p_x, pair, rho)

Arguments

x_list list of x matrices

p_x a list of ncol of elements in x_list

pair an integer vector of two indices

rho the rho value

Value

a block row of matrix for multiview

multiview Perform cooperative learning using the direct algorithm for two or
more views.

Description

multiview uses glmnet::glmnet() to do most of its work and therefore takes many of the same
parameters, but an intercept is always included and several other parameters do not apply. Such
inapplicable arguments are overridden and warnings issued.

multiview 21

Usage

multiview(
x_list,
y,
rho = 0,
family = gaussian(),
weights = NULL,
offset = NULL,
alpha = 1,
nlambda = 100,
lambda.min.ratio = ifelse(nobs < nvars, 0.01, 1e-04),
lambda = NULL,
standardize = TRUE,
intercept = TRUE,
thresh = 1e-07,
maxit = 1e+05,
penalty.factor = rep(1, nvars),
exclude = list(),
lower.limits = -Inf,
upper.limits = Inf,
trace.it = 0

)

Arguments

x_list a list of x matrices with same number of rows nobs

y the quantitative response with length equal to nobs, the (same) number of rows
in each x matrix

rho the weight on the agreement penalty, default 0. rho=0 is a form of early fusion,
and rho=1 is a form of late fusion. We recommend trying a few values of rho
including 0, 0.1, 0.25, 0.5, and 1 first; sometimes rho larger than 1 can also be
helpful.

family A description of the error distribution and link function to be used in the model.
This is the result of a call to a family function. Default is stats::gaussian. (See
stats::family for details on family functions.)

weights observation weights. Can be total counts if responses are proportion matrices.
Default is 1 for each observation

offset A vector of length nobs that is included in the linear predictor (a nobs x nc
matrix for the "multinomial" family). Useful for the "poisson" family (e.g.
log of exposure time), or for refining a model by starting at a current fit. Default
is NULL. If supplied, then values must also be supplied to the predict function.

alpha The elasticnet mixing parameter, with 0 ≤ α ≤ 1. The penalty is defined as

(1− α)/2||β||22 + α||β||1.

alpha=1 is the lasso penalty, and alpha=0 the ridge penalty.

nlambda The number of lambda values - default is 100.

22 multiview

lambda.min.ratio

Smallest value for lambda, as a fraction of lambda.max, the (data derived) entry
value (i.e. the smallest value for which all coefficients are zero). The default
depends on the sample size nobs relative to the number of variables nvars. If
nobs > nvars, the default is 0.0001, close to zero. If nobs < nvars, the default
is 0.01. A very small value of lambda.min.ratio will lead to a saturated fit in
the nobs < nvars case. This is undefined for "binomial" and "multinomial"
models, and glmnet will exit gracefully when the percentage deviance explained
is almost 1.

lambda A user supplied lambda sequence, default NULL. Typical usage is to have the
program compute its own lambda sequence. This sequence, in general, is dif-
ferent from that used in the glmnet::glmnet() call (named lambda) Supplying
a value of lambda overrides this. WARNING: use with care. Avoid supplying
a single value for lambda (for predictions after CV use stats::predict() in-
stead. Supply instead a decreasing sequence of lambda values as multiview
relies on its warms starts for speed, and its often faster to fit a whole path than
compute a single fit.

standardize Logical flag for x variable standardization, prior to fitting the model sequence.
The coefficients are always returned on the original scale. Default is standardize=TRUE.
If variables are in the same units already, you might not wish to standardize. See
details below for y standardization with family="gaussian".

intercept Should intercept(s) be fitted (default TRUE)

thresh Convergence threshold for coordinate descent. Each inner coordinate-descent
loop continues until the maximum change in the objective after any coefficient
update is less than thresh times the null deviance. Defaults value is 1E-7.

maxit Maximum number of passes over the data for all lambda values; default is 10^5.

penalty.factor Separate penalty factors can be applied to each coefficient. This is a number
that multiplies lambda to allow differential shrinkage. Can be 0 for some vari-
ables, which implies no shrinkage, and that variable is always included in the
model. Default is 1 for all variables (and implicitly infinity for variables listed
in exclude). Note: the penalty factors are internally rescaled to sum to nvars,
and the lambda sequence will reflect this change.

exclude Indices of variables to be excluded from the model. Default is none. Equivalent
to an infinite penalty factor for the variables excluded (next item). Users can
supply instead an exclude function that generates the list of indices. This func-
tion is most generally defined as function(x_list, y, ...), and is called
inside multiview to generate the indices for excluded variables. The ... argu-
ment is required, the others are optional. This is useful for filtering wide data,
and works correctly with cv.multiview. See the vignette ’Introduction’ for
examples.

lower.limits Vector of lower limits for each coefficient; default -Inf. Each of these must be
non-positive. Can be presented as a single value (which will then be replicated),
else a vector of length nvars

upper.limits Vector of upper limits for each coefficient; default Inf. See lower.limits

trace.it If trace.it=1, then a progress bar is displayed; useful for big models that take
a long time to fit.

multiview 23

Details

The current code can be slow for "large" data sets, e.g. when the number of features is larger than
1000. It can be helpful to see the progress of multiview as it runs; to do this, set trace.it = 1 in the
call to multiview or cv.multiview. With this, multiview prints out its progress along the way. One
can also pre-filter the features to a smaller set, using the exclude option, with a filter function.

If there are missing values in the feature matrices: we recommend that you center the columns of
each feature matrix, and then fill in the missing values with 0.

For example,
x <- scale(x,TRUE,FALSE)
x[is.na(x)] <- 0
z <- scale(z,TRUE,FALSE)
z[is.na(z)] <- 0

Then run multiview in the usual way. It will exploit the assumed shared latent factors to make
efficient use of the available data.

Value

An object with S3 class "multiview","*" , where "*" is "elnet", "lognet", "multnet", "fishnet"
(poisson), "coxnet" or "mrelnet" for the various types of models.

call the call that produced this object

a0 Intercept sequence of length length(lambda)

beta For "elnet", "lognet", "fishnet" and "coxnet" models, a nvars x length(lambda)
matrix of coefficients, stored in sparse column format ("CsparseMatrix"). For
"multnet" and "mgaussian", a list of nc such matrices, one for each class.

lambda The actual sequence of glmnet::glmnet() lambda values used. When alpha=0,
the largest lambda reported does not quite give the zero coefficients reported
(lambda=inf would in principle). Instead, the largest lambda for alpha=0.001
is used, and the sequence of lambda values is derived from this.

lambda The sequence of lambda values

mvlambda The corresponding sequence of multiview lambda values

dev.ratio The fraction of (null) deviance explained (for "elnet", this is the R-square).
The deviance calculations incorporate weights if present in the model. The de-
viance is defined to be 2*(loglike_sat - loglike), where loglike_sat is the log-
likelihood for the saturated model (a model with a free parameter per observa-
tion). Hence dev.ratio=1-dev/nulldev.

nulldev Null deviance (per observation). This is defined to be 2*(loglike_sat -loglike(Null));
The NULL model refers to the intercept model, except for the Cox, where it is
the 0 model.

df The number of nonzero coefficients for each value of lambda. For "multnet",
this is the number of variables with a nonzero coefficient for any class.

dfmat For "multnet" and "mrelnet" only. A matrix consisting of the number of
nonzero coefficients per class

dim dimension of coefficient matrix (ices)

24 multiview

nobs number of observations

npasses total passes over the data summed over all lambda values

offset a logical variable indicating whether an offset was included in the model

jerr error flag, for warnings and errors (largely for internal debugging).

See Also

print, coef, coef_ordered, predict, and plot methods for "multiview", and the "cv.multiview"
function.

Examples

Gaussian
x = matrix(rnorm(100 * 20), 100, 20)
z = matrix(rnorm(100 * 10), 100, 10)
y = rnorm(100)
fit1 = multiview(list(x=x,z=z), y, rho = 0)
print(fit1)

extract coefficients at a single value of lambda
coef(fit1, s = 0.01)

extract ordered (standardized) coefficients at a single value of lambda
coef_ordered(fit1, s = 0.01)

make predictions
predict(fit1, newx = list(x[1:10,],z[1:10,]), s = c(0.01, 0.005))

make a path plot of features for the fit
plot(fit1, label=TRUE)

Binomial
by = sample(c(0,1), 100, replace = TRUE)
fit2 = multiview(list(x=x,z=z), by, family = binomial(), rho=0.5)
predict(fit2, newx = list(x[1:10,],z[1:10,]), s = c(0.01, 0.005), type="response")
coef_ordered(fit2, s = 0.01)
plot(fit2, label=TRUE)

Poisson
py = matrix(rpois(100, exp(y)))
fit3 = multiview(list(x=x,z=z), py, family = poisson(), rho=0.5)
predict(fit3, newx = list(x[1:10,],z[1:10,]), s = c(0.01, 0.005), type="response")
coef_ordered(fit3, s = 0.01)
plot(fit3, label=TRUE)

multiview.control 25

multiview.control Internal multiview parameters

Description

View and/or change the factory default parameters in multiview

Usage

multiview.control(
fdev = 1e-05,
devmax = 0.999,
eps = 1e-06,
big = 9.9e+35,
mnlam = 5,
pmin = 1e-09,
exmx = 250,
prec = 1e-10,
mxit = 100,
itrace = 0,
epsnr = 1e-06,
mxitnr = 25,
factory = FALSE

)

Arguments

fdev minimum fractional change in deviance for stopping path; factory default = 1.0e-
5

devmax maximum fraction of explained deviance for stopping path; factory default =
0.999

eps minimum value of lambda.min.ratio (see multiview); factory default= 1.0e-6

big large floating point number; factory default = 9.9e35. Inf in definition of up-
per.limit is set to big

mnlam minimum number of path points (lambda values) allowed; factory default = 5

pmin minimum probability for any class. factory default = 1.0e-9. Note that this
implies a pmax of 1-pmin.

exmx maximum allowed exponent. factory default = 250.0

prec convergence threshold for multi response bounds adjustment solution. factory
default = 1.0e-10

mxit maximum iterations for multiresponse bounds adjustment solution. factory de-
fault = 100

itrace If 1 then progress bar is displayed when running multiview and cv.multiview.
factory default = 0

26 multiview.cox.fit

epsnr convergence threshold for multiview.fit. factory default = 1.0e-6

mxitnr maximum iterations for the IRLS loop in multiview.fit. factory default = 25

factory If TRUE, reset all the parameters to the factory default; default is FALSE

Details

If called with no arguments, multiview.control() returns a list with the current settings of these
parameters. Any arguments included in the call sets those parameters to the new values, and then
silently returns. The values set are persistent for the duration of the R session.

Value

A list with named elements as in the argument list

See Also

multiview

Examples

multiview.control(fdev = 0) #continue along path even though not much changes
multiview.control() # view current settings
multiview.control(factory = TRUE) # reset all the parameters to their default

multiview.cox.fit Fit a Cox regression model with elastic net regularization for a single
value of lambda

Description

Fit a Cox regression model via penalized maximum likelihood for a single value of lambda. Can
deal with (start, stop] data and strata, as well as sparse design matrices.

Usage

multiview.cox.fit(
x_list,
x,
y,
rho,
weights,
lambda,
alpha = 1,
offset = rep(0, nobs),
thresh = 1e-10,
maxit = 1e+05,

multiview.cox.fit 27

penalty.factor = rep(1, nvars),
exclude = c(),
lower.limits = -Inf,
upper.limits = Inf,
warm = NULL,
from.cox.path = FALSE,
save.fit = FALSE,
trace.it = 0

)

Arguments

x_list a list of x matrices with same number of rows nobs

x the cbinded matrices in x_list

y the quantitative response with length equal to nobs, the (same) number of rows
in each x matrix

rho the weight on the agreement penalty, default 0. rho=0 is a form of early fusion,
and rho=1 is a form of late fusion. We recommend trying a few values of rho
including 0, 0.1, 0.25, 0.5, and 1 first; sometimes rho larger than 1 can also be
helpful.

weights observation weights. Can be total counts if responses are proportion matrices.
Default is 1 for each observation

lambda A single value for the lambda hyperparameter.

alpha The elasticnet mixing parameter, with 0 ≤ α ≤ 1. The penalty is defined as

(1− α)/2||β||22 + α||β||1.

alpha=1 is the lasso penalty, and alpha=0 the ridge penalty.

offset A vector of length nobs that is included in the linear predictor (a nobs x nc
matrix for the "multinomial" family). Useful for the "poisson" family (e.g.
log of exposure time), or for refining a model by starting at a current fit. Default
is NULL. If supplied, then values must also be supplied to the predict function.

thresh Convergence threshold for coordinate descent. Each inner coordinate-descent
loop continues until the maximum change in the objective after any coefficient
update is less than thresh times the null deviance. Defaults value is 1E-7.

maxit Maximum number of passes over the data for all lambda values; default is 10^5.

penalty.factor Separate penalty factors can be applied to each coefficient. This is a number
that multiplies lambda to allow differential shrinkage. Can be 0 for some vari-
ables, which implies no shrinkage, and that variable is always included in the
model. Default is 1 for all variables (and implicitly infinity for variables listed
in exclude). Note: the penalty factors are internally rescaled to sum to nvars,
and the lambda sequence will reflect this change.

exclude Indices of variables to be excluded from the model. Default is none. Equivalent
to an infinite penalty factor for the variables excluded (next item). Users can
supply instead an exclude function that generates the list of indices. This func-
tion is most generally defined as function(x_list, y, ...), and is called

28 multiview.cox.fit

inside multiview to generate the indices for excluded variables. The ... argu-
ment is required, the others are optional. This is useful for filtering wide data,
and works correctly with cv.multiview. See the vignette ’Introduction’ for
examples.

lower.limits Vector of lower limits for each coefficient; default -Inf. Each of these must be
non-positive. Can be presented as a single value (which will then be replicated),
else a vector of length nvars

upper.limits Vector of upper limits for each coefficient; default Inf. See lower.limits

warm Either a glmnetfit object or a list (with names beta and a0 containing coeffi-
cients and intercept respectively) which can be used as a warm start. Default is
NULL, indicating no warm start. For internal use only.

from.cox.path Was multiview.cox.fit() called from multiview.path()? Default is FALSE.This
has implications for computation of the penalty factors.

save.fit Return the warm start object? Default is FALSE.

trace.it If trace.it=1, then a progress bar is displayed; useful for big models that take
a long time to fit.

Details

WARNING: Users should not call multiview.cox.fit directly. Higher-level functions in this
package call multiview.cox.fit as a subroutine. If a warm start object is provided, some of the
other arguments in the function may be overriden.

multiview.cox.fit solves the elastic net problem for a single, user-specified value of lambda.
multiview.cox.fit works for Cox regression models, including (start, stop] data and strata. It
solves the problem using iteratively reweighted least squares (IRLS). For each IRLS iteration,
multiview.cox.fit makes a quadratic (Newton) approximation of the log-likelihood, then calls
elnet.fit to minimize the resulting approximation.

In terms of standardization: multiview.cox.fit does not standardize x and weights. penalty.factor
is standardized so that they sum up to nvars.

Value

An object with class "coxnet", "glmnetfit" and "glmnet". The list returned contains more keys than
that of a "glmnet" object.

a0 Intercept value, NULL for "cox" family.

beta A nvars x 1 matrix of coefficients, stored in sparse matrix format.

df The number of nonzero coefficients.

dim Dimension of coefficient matrix.

lambda Lambda value used.

dev.ratio The fraction of (null) deviance explained. The deviance calculations incorporate
weights if present in the model. The deviance is defined to be 2*(loglike_sat -
loglike), where loglike_sat is the log-likelihood for the saturated model (a model
with a free parameter per observation). Hence dev.ratio=1-dev/nulldev.

multiview.cox.path 29

nulldev Null deviance (per observation). This is defined to be 2*(loglike_sat -loglike(Null)).
The null model refers to the 0 model.

npasses Total passes over the data.

jerr Error flag, for warnings and errors (largely for internal debugging).

offset A logical variable indicating whether an offset was included in the model.

call The call that produced this object.

nobs Number of observations.

warm_fit If save.fit=TRUE, output of C++ routine, used for warm starts. For internal use
only.

family Family used for the model, always "cox".

converged A logical variable: was the algorithm judged to have converged?

boundary A logical variable: is the fitted value on the boundary of the attainable values?

obj_function Objective function value at the solution.

multiview.cox.path Fit a Cox regression model with elastic net regularization for a path of
lambda values

Description

Fit a Cox regression model via penalized maximum likelihood for a path of lambda values. Can
deal with (start, stop] data and strata, as well as sparse design matrices.

Usage

multiview.cox.path(
x_list,
x,
y,
rho = 0,
weights = NULL,
lambda = NULL,
offset = NULL,
alpha = 1,
nlambda = 100,
lambda.min.ratio = ifelse(nobs < nvars, 0.01, 1e-04),
standardize = TRUE,
intercept = TRUE,
thresh = 1e-07,
exclude = integer(0),
penalty.factor = rep(1, nvars),
lower.limits = -Inf,
upper.limits = Inf,
maxit = 1e+05,

30 multiview.cox.path

trace.it = 0,
nvars,
nobs,
xm,
xs,
control,
vp,
vnames,
is.offset

)

Arguments

x_list a list of x matrices with same number of rows nobs

x the cbinded matrices in x_list

y the quantitative response with length equal to nobs, the (same) number of rows
in each x matrix

rho the weight on the agreement penalty, default 0. rho=0 is a form of early fusion,
and rho=1 is a form of late fusion. We recommend trying a few values of rho
including 0, 0.1, 0.25, 0.5, and 1 first; sometimes rho larger than 1 can also be
helpful.

weights observation weights. Can be total counts if responses are proportion matrices.
Default is 1 for each observation

lambda A user supplied lambda sequence, default NULL. Typical usage is to have the
program compute its own lambda sequence. This sequence, in general, is dif-
ferent from that used in the glmnet::glmnet() call (named lambda) Supplying
a value of lambda overrides this. WARNING: use with care. Avoid supplying
a single value for lambda (for predictions after CV use stats::predict() in-
stead. Supply instead a decreasing sequence of lambda values as multiview
relies on its warms starts for speed, and its often faster to fit a whole path than
compute a single fit.

offset A vector of length nobs that is included in the linear predictor (a nobs x nc
matrix for the "multinomial" family). Useful for the "poisson" family (e.g.
log of exposure time), or for refining a model by starting at a current fit. Default
is NULL. If supplied, then values must also be supplied to the predict function.

alpha The elasticnet mixing parameter, with 0 ≤ α ≤ 1. The penalty is defined as

(1− α)/2||β||22 + α||β||1.

alpha=1 is the lasso penalty, and alpha=0 the ridge penalty.

nlambda The number of lambda values - default is 100.
lambda.min.ratio

Smallest value for lambda, as a fraction of lambda.max, the (data derived) entry
value (i.e. the smallest value for which all coefficients are zero). The default
depends on the sample size nobs relative to the number of variables nvars. If
nobs > nvars, the default is 0.0001, close to zero. If nobs < nvars, the default
is 0.01. A very small value of lambda.min.ratio will lead to a saturated fit in

multiview.cox.path 31

the nobs < nvars case. This is undefined for "binomial" and "multinomial"
models, and glmnet will exit gracefully when the percentage deviance explained
is almost 1.

standardize Logical flag for x variable standardization, prior to fitting the model sequence.
The coefficients are always returned on the original scale. Default is standardize=TRUE.
If variables are in the same units already, you might not wish to standardize. See
details below for y standardization with family="gaussian".

intercept Should intercept(s) be fitted (default TRUE)
thresh Convergence threshold for coordinate descent. Each inner coordinate-descent

loop continues until the maximum change in the objective after any coefficient
update is less than thresh times the null deviance. Defaults value is 1E-7.

exclude Indices of variables to be excluded from the model. Default is none. Equivalent
to an infinite penalty factor for the variables excluded (next item). Users can
supply instead an exclude function that generates the list of indices. This func-
tion is most generally defined as function(x_list, y, ...), and is called
inside multiview to generate the indices for excluded variables. The ... argu-
ment is required, the others are optional. This is useful for filtering wide data,
and works correctly with cv.multiview. See the vignette ’Introduction’ for
examples.

penalty.factor Separate penalty factors can be applied to each coefficient. This is a number
that multiplies lambda to allow differential shrinkage. Can be 0 for some vari-
ables, which implies no shrinkage, and that variable is always included in the
model. Default is 1 for all variables (and implicitly infinity for variables listed
in exclude). Note: the penalty factors are internally rescaled to sum to nvars,
and the lambda sequence will reflect this change.

lower.limits Vector of lower limits for each coefficient; default -Inf. Each of these must be
non-positive. Can be presented as a single value (which will then be replicated),
else a vector of length nvars

upper.limits Vector of upper limits for each coefficient; default Inf. See lower.limits

maxit Maximum number of passes over the data for all lambda values; default is 10^5.
trace.it If trace.it=1, then a progress bar is displayed; useful for big models that take

a long time to fit.
nvars the number of variables (total)
nobs the number of observations
xm the column means vector (could be zeros if standardize = FALSE)
xs the column std dev vector (could be 1s if standardize = FALSE)
control the multiview control object
vp the variable penalities (processed)
vnames the variable names
is.offset a flag indicating if offset is supplied or not

Details

Sometimes the sequence is truncated before nlambda values of lambda have been used. This hap-
pens when cox.path detects that the decrease in deviance is marginal (i.e. we are near a saturated
fit).

32 multiview.cox.path

Value

An object of class "coxnet" and "glmnet".

a0 Intercept value, NULL for "cox" family.

beta A nvars x length(lambda) matrix of coefficients, stored in sparse matrix for-
mat.

df The number of nonzero coefficients for each value of lambda.

dim Dimension of coefficient matrix.

lambda The actual sequence of lambda values used. When alpha=0, the largest lambda
reported does not quite give the zero coefficients reported (lambda=inf would in
principle). Instead, the largest lambda for alpha=0.001 is used, and the sequence
of lambda values is derived from this.

dev.ratio The fraction of (null) deviance explained. The deviance calculations incorporate
weights if present in the model. The deviance is defined to be 2*(loglike_sat -
loglike), where loglike_sat is the log-likelihood for the saturated model (a model
with a free parameter per observation). Hence dev.ratio=1-dev/nulldev.

nulldev Null deviance (per observation). This is defined to be 2*(loglike_sat -loglike(Null)).
The null model refers to the 0 model.

npasses Total passes over the data summed over all lambda values.

jerr Error flag, for warnings and errors (largely for internal debugging).

offset A logical variable indicating whether an offset was included in the model.

call The call that produced this object.

nobs Number of observations.

Examples

set.seed(2)
nobs <- 100; nvars <- 15
xvec <- rnorm(nobs * nvars)
xvec[sample.int(nobs * nvars, size = 0.4 * nobs * nvars)] <- 0
x <- matrix(xvec, nrow = nobs)
beta <- rnorm(nvars / 3)
fx <- x[, seq(nvars / 3)] %*% beta / 3
ty <- rexp(nobs, exp(fx))
tcens <- rbinom(n = nobs, prob = 0.3, size = 1)
jsurv <- survival::Surv(ty, tcens)
fit1 <- glmnet:::cox.path(x, jsurv)

works with sparse x matrix
x_sparse <- Matrix::Matrix(x, sparse = TRUE)
fit2 <- glmnet:::cox.path(x_sparse, jsurv)

example with (start, stop] data
set.seed(2)
start_time <- runif(100, min = 0, max = 5)
stop_time <- start_time + runif(100, min = 0.1, max = 3)
status <- rbinom(n = nobs, prob = 0.3, size = 1)

multiview.fit 33

jsurv_ss <- survival::Surv(start_time, stop_time, status)
fit3 <- glmnet:::cox.path(x, jsurv_ss)

example with strata
jsurv_ss2 <- glmnet::stratifySurv(jsurv_ss, rep(1:2, each = 50))
fit4 <- glmnet:::cox.path(x, jsurv_ss2)

multiview.fit Fit a GLM with elastic net regularization for a single value of lambda

Description

Fit a generalized linear model via penalized maximum likelihood for a single value of lambda. Can
deal with any GLM family.

Usage

multiview.fit(
x_list,
x,
y,
rho,
weights,
lambda,
alpha = 1,
offset = rep(0, nobs),
family = gaussian(),
intercept = TRUE,
thresh = 1e-07,
maxit = 1e+05,
penalty.factor = rep(1, nvars),
exclude = c(),
lower.limits = -Inf,
upper.limits = Inf,
warm = NULL,
from.multiview.path = FALSE,
save.fit = FALSE,
trace.it = 0,
user_lambda = FALSE

)

Arguments

x_list a list of x matrices with same number of rows nobs

x the column-binded entries of x_list

y the quantitative response with length equal to nobs, the (same) number of rows
in each x matrix

34 multiview.fit

rho the weight on the agreement penalty, default 0. rho=0 is a form of early fusion,
and rho=1 is a form of late fusion. We recommend trying a few values of rho
including 0, 0.1, 0.25, 0.5, and 1 first; sometimes rho larger than 1 can also be
helpful.

weights observation weights. Can be total counts if responses are proportion matrices.
Default is 1 for each observation

lambda A single value for the lambda hyperparameter.

alpha The elasticnet mixing parameter, with 0 ≤ α ≤ 1. The penalty is defined as

(1− α)/2||β||22 + α||β||1.

alpha=1 is the lasso penalty, and alpha=0 the ridge penalty.

offset A vector of length nobs that is included in the linear predictor (a nobs x nc
matrix for the "multinomial" family). Useful for the "poisson" family (e.g.
log of exposure time), or for refining a model by starting at a current fit. Default
is NULL. If supplied, then values must also be supplied to the predict function.

family A description of the error distribution and link function to be used in the model.
This is the result of a call to a family function. Default is stats::gaussian. (See
stats::family for details on family functions.)

intercept Should intercept(s) be fitted (default TRUE)

thresh Convergence threshold for coordinate descent. Each inner coordinate-descent
loop continues until the maximum change in the objective after any coefficient
update is less than thresh times the null deviance. Defaults value is 1E-7.

maxit Maximum number of passes over the data; default is 10^5. (If a warm start
object is provided, the number of passes the warm start object performed is
included.)

penalty.factor Separate penalty factors can be applied to each coefficient. This is a number
that multiplies lambda to allow differential shrinkage. Can be 0 for some vari-
ables, which implies no shrinkage, and that variable is always included in the
model. Default is 1 for all variables (and implicitly infinity for variables listed
in exclude). Note: the penalty factors are internally rescaled to sum to nvars,
and the lambda sequence will reflect this change.

exclude Indices of variables to be excluded from the model. Default is none. Equivalent
to an infinite penalty factor for the variables excluded (next item). Users can
supply instead an exclude function that generates the list of indices. This func-
tion is most generally defined as function(x_list, y, ...), and is called
inside multiview to generate the indices for excluded variables. The ... argu-
ment is required, the others are optional. This is useful for filtering wide data,
and works correctly with cv.multiview. See the vignette ’Introduction’ for
examples.

lower.limits Vector of lower limits for each coefficient; default -Inf. Each of these must be
non-positive. Can be presented as a single value (which will then be replicated),
else a vector of length nvars

upper.limits Vector of upper limits for each coefficient; default Inf. See lower.limits

multiview.fit 35

warm Either a multiview object or a list (with names beta and a0 containing coeffi-
cients and intercept respectively) which can be used as a warm start. Default is
NULL, indicating no warm start. For internal use only.

from.multiview.path

Was multiview.fit() called from multiview.path()? Default is FALSE.This
has implications for computation of the penalty factors.

save.fit Return the warm start object? Default is FALSE.

trace.it Controls how much information is printed to screen. If trace.it = 2, some
information about the fitting procedure is printed to the console as the model is
being fitted. Default is trace.it = 0 (no information printed). (trace.it = 1
not used for compatibility with multiview.path.)

user_lambda a flag indicating if user supplied the lambda sequence

Details

WARNING: Users should not call multiview.fit directly. Higher-level functions in this package
call multiview.fit as a subroutine. If a warm start object is provided, some of the other arguments
in the function may be overriden.

multiview.fit solves the elastic net problem for a single, user-specified value of lambda. multiview.fit
works for any GLM family. It solves the problem using iteratively reweighted least squares (IRLS).
For each IRLS iteration, multiview.fit makes a quadratic (Newton) approximation of the log-
likelihood, then calls elnet.fit to minimize the resulting approximation.

In terms of standardization: multiview.fit does not standardize x and weights. penalty.factor
is standardized so that to sum to nvars.

Value

An object with class "multiview". The list returned contains more keys than that of a "multiview"
object.

a0 Intercept value.

beta A nvars by 1 matrix of coefficients, stored in sparse matrix format.

df The number of nonzero coefficients.

dim Dimension of coefficient matrix.

lambda Lambda value used.

lambda_scale The multiview lambda scale factor

dev.ratio The fraction of (null) deviance explained. The deviance calculations incorporate
weights if present in the model. The deviance is defined to be 2*(loglike_sat -
loglike), where loglike_sat is the log-likelihood for the saturated model (a model
with a free parameter per observation). Hence dev.ratio=1-dev/nulldev.

nulldev Null deviance (per observation). This is defined to be 2*(loglike_sat -loglike(Null)).
The null model refers to the intercept model.

npasses Total passes over the data.

jerr Error flag, for warnings and errors (largely for internal debugging).

offset A logical variable indicating whether an offset was included in the model.

36 multiview.path

call The call that produced this object.

nobs Number of observations.

warm_fit If save.fit = TRUE, output of C++ routine, used for warm starts. For internal
use only.

family Family used for the model.

converged A logical variable: was the algorithm judged to have converged?

boundary A logical variable: is the fitted value on the boundary of the attainable values?

obj_function Objective function value at the solution.

multiview.path Fit a GLM with elastic net regularization for a path of lambda values

Description

Fit a generalized linear model via penalized maximum likelihood for a path of lambda values. Can
deal with any GLM family.

Usage

multiview.path(
x_list,
y,
rho = 0,
weights = NULL,
lambda,
nlambda,
user_lambda = FALSE,
alpha = 1,
offset = NULL,
family = gaussian(),
standardize = TRUE,
intercept = TRUE,
thresh = 1e-07,
maxit = 1e+05,
penalty.factor = rep(1, nvars),
exclude = integer(0),
lower.limits = -Inf,
upper.limits = Inf,
trace.it = 0,
x,
nvars,
nobs,
xm,
xs,
control,

multiview.path 37

vp,
vnames,
start_val,
is.offset

)

Arguments

x_list a list of x matrices with same number of rows nobs
y the quantitative response with length equal to nobs, the (same) number of rows

in each x matrix
rho the weight on the agreement penalty, default 0. rho=0 is a form of early fusion,

and rho=1 is a form of late fusion. We recommend trying a few values of rho
including 0, 0.1, 0.25, 0.5, and 1 first; sometimes rho larger than 1 can also be
helpful.

weights observation weights. Can be total counts if responses are proportion matrices.
Default is 1 for each observation

lambda A user supplied lambda sequence, default NULL. Typical usage is to have the
program compute its own lambda sequence. This sequence, in general, is dif-
ferent from that used in the glmnet::glmnet() call (named lambda) Supplying
a value of lambda overrides this. WARNING: use with care. Avoid supplying
a single value for lambda (for predictions after CV use stats::predict() in-
stead. Supply instead a decreasing sequence of lambda values as multiview
relies on its warms starts for speed, and its often faster to fit a whole path than
compute a single fit.

nlambda The number of lambda values - default is 100.
user_lambda a flag indicating if user supplied the lambda sequence
alpha The elasticnet mixing parameter, with 0 ≤ α ≤ 1. The penalty is defined as

(1− α)/2||β||22 + α||β||1.

alpha=1 is the lasso penalty, and alpha=0 the ridge penalty.
offset A vector of length nobs that is included in the linear predictor (a nobs x nc

matrix for the "multinomial" family). Useful for the "poisson" family (e.g.
log of exposure time), or for refining a model by starting at a current fit. Default
is NULL. If supplied, then values must also be supplied to the predict function.

family A description of the error distribution and link function to be used in the model.
This is the result of a call to a family function. Default is stats::gaussian. (See
stats::family for details on family functions.)

standardize Logical flag for x variable standardization, prior to fitting the model sequence.
The coefficients are always returned on the original scale. Default is standardize=TRUE.
If variables are in the same units already, you might not wish to standardize. See
details below for y standardization with family="gaussian".

intercept Should intercept(s) be fitted (default TRUE)
thresh Convergence threshold for coordinate descent. Each inner coordinate-descent

loop continues until the maximum change in the objective after any coefficient
update is less than thresh times the null deviance. Defaults value is 1E-7.

38 multiview.path

maxit Maximum number of passes over the data for all lambda values; default is 10^5.

penalty.factor Separate penalty factors can be applied to each coefficient. This is a number
that multiplies lambda to allow differential shrinkage. Can be 0 for some vari-
ables, which implies no shrinkage, and that variable is always included in the
model. Default is 1 for all variables (and implicitly infinity for variables listed
in exclude). Note: the penalty factors are internally rescaled to sum to nvars,
and the lambda sequence will reflect this change.

exclude Indices of variables to be excluded from the model. Default is none. Equivalent
to an infinite penalty factor for the variables excluded (next item). Users can
supply instead an exclude function that generates the list of indices. This func-
tion is most generally defined as function(x_list, y, ...), and is called
inside multiview to generate the indices for excluded variables. The ... argu-
ment is required, the others are optional. This is useful for filtering wide data,
and works correctly with cv.multiview. See the vignette ’Introduction’ for
examples.

lower.limits Vector of lower limits for each coefficient; default -Inf. Each of these must be
non-positive. Can be presented as a single value (which will then be replicated),
else a vector of length nvars

upper.limits Vector of upper limits for each coefficient; default Inf. See lower.limits

trace.it If trace.it=1, then a progress bar is displayed; useful for big models that take
a long time to fit.

x the cbinded matrices in x_list

nvars the number of variables (total)

nobs the number of observations

xm the column means vector (could be zeros if standardize = FALSE)

xs the column std dev vector (could be 1s if standardize = FALSE)

control the multiview control object

vp the variable penalities (processed)

vnames the variable names

start_val the result of first call to get_start

is.offset a flag indicating if offset is supplied or not

Details

multiview.path solves the elastic net problem for a path of lambda values. It generalizes multiview::multiview
in that it works for any GLM family.

Sometimes the sequence is truncated before nlam values of lambda have been used. This happens
when multiview.path detects that the decrease in deviance is marginal (i.e. we are near a saturated
fit).

Value

An object with class "multiview" "glmnetfit" and "glmnet"

a0 Intercept sequence of length length(lambda).

obj_function 39

beta A nvars x length(lambda) matrix of coefficients, stored in sparse matrix
format.

df The number of nonzero coefficients for each value of lambda.

dim Dimension of coefficient matrix.

lambda The actual sequence of lambda values used. When alpha=0, the largest lambda
reported does not quite give the zero coefficients reported (lambda=inf would in
principle). Instead, the largest lambda for alpha=0.001 is used, and the sequence
of lambda values is derived from this.

lambda The sequence of lambda values

mvlambda The corresponding sequence of multiview lambda values

dev.ratio The fraction of (null) deviance explained. The deviance calculations incorporate
weights if present in the model. The deviance is defined to be 2*(loglike_sat -
loglike), where loglike_sat is the log-likelihood for the saturated model (a model
with a free parameter per observation). Hence dev.ratio=1-dev/nulldev.

nulldev Null deviance (per observation). This is defined to be 2*(loglike_sat -loglike(Null)).
The null model refers to the intercept model.

npasses Total passes over the data summed over all lambda values.

jerr Error flag, for warnings and errors (largely for internal debugging).

offset A logical variable indicating whether an offset was included in the model.

call The call that produced this object.

family Family used for the model.

nobs Number of observations.

obj_function Elastic net objective function value

Description

Returns the elastic net objective function value.

Usage

obj_function(
y,
mu,
weights,
family,
lambda,
alpha,
coefficients,
vp,
view_components,
rho

)

40 pen_function

Arguments

y Quantitative response variable.

mu Model’s predictions for y.

weights Observation weights.

family A description of the error distribution and link function to be used in the model.
This is the result of a call to a family function.

lambda A single value for the lambda hyperparameter.

alpha The elasticnet mixing parameter, with 0 ≤ α ≤ 1.

coefficients The model’s coefficients (excluding intercept).

vp Penalty factors for each of the coefficients.
view_components

a list of lists containing indices of coefficients and associated covariate (view)
pairs

rho the fusion parameter

pen_function Elastic net penalty value

Description

Returns the elastic net penalty value without the lambda factor.

Usage

pen_function(coefficients, alpha = 1, vp = 1)

Arguments

coefficients The model’s coefficients (excluding intercept).

alpha The elasticnet mixing parameter, with 0 ≤ α ≤ 1.

vp Penalty factors for each of the coefficients.

Details

The penalty is defined as

(1− α)/2
∑

vpjβ
2
j + α

∑
vpj |β|.

Note the omission of the multiplicative lambda factor.

plot.multiview 41

plot.multiview Plot coefficients from a "multiview" object

Description

Produces a coefficient profile plot of the coefficient paths for a fitted "multiview" object. The
paths are colored by the data views, from which the features come.

Usage

S3 method for class 'multiview'
plot(x, col_palette = NULL, label = FALSE, ...)

Arguments

x A fitted "multiview" model.

col_palette A set of colors to use for indicating different views. If NULL, the function will
use the color palette "Set1" from the RColorBrewer package.

label If TRUE, label the curves with variable sequence. numbers.

... Other graphical parameters to plot.

Value

a NULL value as this function is really meant for its side-effect of generating a plot.

Examples

Gaussian
x = matrix(rnorm(100 * 20), 100, 20)
z = matrix(rnorm(100 * 10), 100, 10)
y = rnorm(100)
fit1 = multiview(list(x=x,z=z), y, rho = 0)
plot(fit1, label = TRUE)

Binomial
by = sample(c(0,1), 100, replace = TRUE)
fit2 = multiview(list(x=x,z=z), by, family = binomial(), rho=0.5)
plot(fit2, label=FALSE)

Poisson
py = matrix(rpois(100, exp(y)))
fit3 = multiview(list(x=x,z=z), py, family = poisson(), rho=0.5)
plot(fit3, label=TRUE)

42 predict.cv.multiview

predict.cv.multiview Make predictions from a "cv.multiview" object.

Description

This function makes predictions from a cross-validated multiview model, using the stored "multiview"
object, and the optimal value chosen for lambda.

Usage

S3 method for class 'cv.multiview'
predict(object, newx, s = c("lambda.1se", "lambda.min"), ...)

Arguments

object Fitted "cv.multiview" or object.

newx List of new view matrices at which predictions are to be made.

s Value(s) of the penalty parameter lambda at which predictions are required. De-
fault is the value s="lambda.1se" stored on the CV object. Alternatively
s="lambda.min" can be used. If s is numeric, it is taken as the value(s) of
lambda to be used. (For historical reasons we use the symbol ’s’ rather than
’lambda’ to reference this parameter)

... Not used. Other arguments to predict.

Details

This function makes it easier to use the results of cross-validation to make a prediction.

Value

The object returned depends on the . . . argument which is passed on to the predict method for
multiview objects.

Examples

Gaussian
Generate data based on a factor model
set.seed(1)
x = matrix(rnorm(100*10), 100, 10)
z = matrix(rnorm(100*10), 100, 10)
U = matrix(rnorm(100*5), 100, 5)
for (m in seq(5)){

u = rnorm(100)
x[, m] = x[, m] + u
z[, m] = z[, m] + u
U[, m] = U[, m] + u}

x = scale(x, center = TRUE, scale = FALSE)
z = scale(z, center = TRUE, scale = FALSE)

predict.multiview 43

beta_U = c(rep(0.1, 5))
y = U %*% beta_U + 0.1 * rnorm(100)
fit1 = cv.multiview(list(x=x,z=z), y, rho = 0.3)
predict(fit1, newx = list(x[1:5,],z[1:5,]), s = "lambda.min")

Binomial

by = 1 * (y > median(y))
fit2 = cv.multiview(list(x=x,z=z), by, family = binomial(), rho = 0.9)
predict(fit2, newx = list(x[1:5,],z[1:5,]), s = "lambda.min", type = "response")

Poisson
py = matrix(rpois(100, exp(y)))
fit3 = cv.multiview(list(x=x,z=z), py, family = poisson(), rho = 0.6)
predict(fit3, newx = list(x[1:5,],z[1:5,]), s = "lambda.min", type = "response")

predict.multiview Get predictions from a multiview fit object

Description

Gives fitted values, linear predictors, coefficients and number of non-zero coefficients from a fitted
multiview object.

Usage

S3 method for class 'multiview'
predict(
object,
newx,
s = NULL,
type = c("link", "response", "coefficients", "class", "nonzero"),
exact = FALSE,
newoffset,
...

)

Arguments

object Fitted "multiview" object.

newx list of new matrices for x at which predictions are to be made. Must be a list of
matrices. This argument is not used for type = c("coefficients","nonzero").

s Value(s) of the penalty parameter lambda at which predictions are required. De-
fault is the entire sequence used to create the model.

44 predict.multiview

type Type of prediction required. Type "link" gives the linear predictors (eta scale);
Type "response" gives the fitted values (mu scale). Type "coefficients" computes
the coefficients at the requested values for s. Type "nonzero" returns a list of the
indices of the nonzero coefficients for each value of s. Type "class" returns class
labels for binomial family only.

exact This argument is relevant only when predictions are made at values of s (lambda)
different from those used in the fitting of the original model. If exact=FALSE
(default), then the predict function uses linear interpolation to make predictions
for values of s (lambda) that do not coincide with those used in the fitting al-
gorithm. While this is often a good approximation, it can sometimes be a bit
coarse. With exact=TRUE, these different values of s are merged (and sorted)
with object$lambda, and the model is refit before predictions are made. In this
case, it is required to supply the original data x= and y= as additional named
arguments to predict() or coef(). The workhorse predict.multiview() needs
to update the model, and so needs the data used to create it. The same is true
of weights, offset, penalty.factor, lower.limits, upper.limits if these were used in
the original call. Failure to do so will result in an error.

newoffset If an offset is used in the fit, then one must be supplied for making predictions
(except for type="coefficients" or type="nonzero").

... This is the mechanism for passing arguments like x= when exact=TRUE; see
exact argument.

Value

The object returned depends on type.

Examples

Gaussian
x = matrix(rnorm(100 * 20), 100, 20)
z = matrix(rnorm(100 * 20), 100, 20)
y = rnorm(100)
fit1 = multiview(list(x=x,z=z), y, rho = 0)
predict(fit1, newx = list(x[1:10,],z[1:10,]), s = c(0.01, 0.005))

Binomial
by = sample(c(0,1), 100, replace = TRUE)
fit2 = multiview(list(x=x,z=z), by, family = binomial(), rho=0.5)
predict(fit2, newx = list(x[1:10,],z[1:10,]), s = c(0.01, 0.005), type = "response")

Poisson
py = matrix(rpois(100, exp(y)))
fit3 = multiview(list(x=x,z=z), py, family = poisson(), rho=0.5)
predict(fit3, newx = list(x[1:10,],z[1:10,]), s = c(0.01, 0.005), type = "response")

reshape_x_to_xlist 45

reshape_x_to_xlist Return a new list of x matrices of same shapes as those in x_list

Description

Return a new list of x matrices of same shapes as those in x_list

Usage

reshape_x_to_xlist(x, x_list)

Arguments

x the column-binded entries of x_list

x_list a list of x matrices with same number of rows nobs

response.coxnet Make response for coxnet

Description

Internal function to make the response y passed to glmnet suitable for coxnet (i.e. glmnet with
family = "cox"). Sanity checks are performed here too.

Usage

response.coxnet(y)

Arguments

y Response variable. Either a class "Surv" object or a two-column matrix with
columns named ’time’ and ’status’.

Details

If y is a class "Surv" object, this function returns y with no changes. If y is a two-column matrix
with columns named ’time’ and ’status’, it is converted into a "Surv" object.

Value

A class "Surv" object.

46 to_nvar_index

select_matrix_list_columns

Select x_list columns specified by (conformable) list of indices

Description

Select x_list columns specified by (conformable) list of indices

Usage

select_matrix_list_columns(x_list, indices)

Arguments

x_list a list of x matrices with same number of rows nobs

indices a vector of indices in 1:nvars

Value

a list of x matrices

to_nvar_index Translate from column indices in list of x matrices to indices in
1:nvars. No sanity checks for efficiency

Description

Translate from column indices in list of x matrices to indices in 1:nvars. No sanity checks for
efficiency

Usage

to_nvar_index(x_list, index_list)

Arguments

x_list a list of x matrices with same number of rows nobs

index_list a list of column indices for each matrix, including possibly column indices of
length 0

Value

a vector of indices between 1 and nvars = sum of ncol(x) for x in x_list

to_xlist_index 47

to_xlist_index Translate indices in 1:nvars to column indices in list of x matrices.
No sanity checks

Description

Translate indices in 1:nvars to column indices in list of x matrices. No sanity checks

Usage

to_xlist_index(x_list, index)

Arguments

x_list a list of x matrices with same number of rows nobs

index vector of indices between 1 and nvars = sum of ncol(x) for x in x_list

Value

a conformed list of column indices for each matrix, including possibly column indices of length 0

view.contribution Evaluate the contribution of data views in making prediction

Description

Evaluate the contribution of each data view in making prediction. The function has two options.
If force is set to NULL, the data view contribution is benchmarked by the null model. If force
is set to a list of data views, the contribution is benchmarked by the model fit on this list of data
views, and the function evaluates the marginal contribution of each additional data view on top of
this benchmarking list of views. The function returns a table showing the percentage improvement
in reducing error as compared to the bechmarking model made by each data view.

Usage

view.contribution(
x_list,
y,
family = gaussian(),
rho,
s = c("lambda.min", "lambda.1se"),
eval_data = c("train", "test"),
weights = NULL,
type.measure = c("default", "mse", "deviance", "class", "auc", "mae", "C"),
x_list_test = NULL,

48 view.contribution

test_y = NULL,
nfolds = 10,
foldid = NULL,
force = NULL,
...

)

Arguments

x_list a list of x matrices with same number of rows nobs

y the quantitative response with length equal to nobs, the (same) number of rows
in each x matrix

family A description of the error distribution and link function to be used in the model.
This is the result of a call to a family function. Default is stats::gaussian. (See
stats::family for details on family functions.)

rho the weight on the agreement penalty, default 0. rho=0 is a form of early fusion,
and rho=1 is a form of late fusion. We recommend trying a few values of rho
including 0, 0.1, 0.25, 0.5, and 1 first; sometimes rho larger than 1 can also be
helpful.

s Value(s) of the penalty parameter lambda at which predictions are required. De-
fault is the value s="lambda.1se" stored on the CV object. Alternatively
s="lambda.min" can be used. If s is numeric, it is taken as the value(s) of
lambda to be used. (For historical reasons we use the symbol ’s’ rather than
’lambda’ to reference this parameter)

eval_data If train, we evaluate the contribution of data views based on training data using
cross validation error; if test, we evaluate the contribution of data views based
on test data. Default is train. If set to test, users need to provide the test data,
i.e. x_list_test and y_test.

weights Observation weights; defaults to 1 per observation

type.measure loss to use for cross-validation. Currently five options, not all available for all
models. The default is type.measure="deviance", which uses squared-error
for gaussian models (a.k.a type.measure="mse" there), deviance for logistic
and poisson regression, and partial-likelihood for the Cox model. type.measure="class"
applies to binomial and multinomial logistic regression only, and gives misclas-
sification error. type.measure="auc" is for two-class logistic regression only,
and gives area under the ROC curve. type.measure="mse" or type.measure="mae"
(mean absolute error) can be used by all models except the "cox"; they measure
the deviation from the fitted mean to the response. type.measure="C" is Har-
rel’s concordance measure, only available for cox models.

x_list_test A list of x matrices in the test data for evaluation.

test_y The quantitative response in the test data with length equal to the number of
rows in each x matrix of the test data.

nfolds number of folds - default is 10. Although nfolds can be as large as the sample
size (leave-one-out CV), it is not recommended for large datasets. Smallest
value allowable is nfolds=3

view.contribution 49

foldid an optional vector of values between 1 and nfold identifying what fold each
observation is in. If supplied, nfold can be missing.

force If NULL, the data view contribution is benchmarked by the null model. If users
want to benchmark by the model fit on a specified list of data views, force needs
to be set to this list of benchmarking data views, i.e. a list of x matrices. The
function then evaluates the marginal contribution of each additional data, i.e. the
data views in x_list but not in force, on top of the benchmarking views.

... Other arguments that can be passed to multiview

Value

a data frame consisting of the view, error metric, and percentage improvement.

Examples

set.seed(3)
Simulate data based on the factor model
x = matrix(rnorm(200*20), 200, 20)
z = matrix(rnorm(200*20), 200, 20)
w = matrix(rnorm(200*20), 200, 20)
U = matrix(rep(0, 200*10), 200, 10) # latent factors
for (m in seq(10)){

u = rnorm(200)
x[, m] = x[, m] + u
z[, m] = z[, m] + u
w[, m] = w[, m] + u
U[, m] = U[, m] + u}

beta_U = c(rep(2, 5),rep(-2, 5))
y = U %*% beta_U + 3 * rnorm(100)

Split training and test sets
smp_size_train = floor(0.9 * nrow(x))
train_ind = sort(sample(seq_len(nrow(x)), size = smp_size_train))
test_ind = setdiff(seq_len(nrow(x)), train_ind)
train_X = scale(x[train_ind,])
test_X = scale(x[test_ind,])
train_Z <- scale(z[train_ind,])
test_Z <- scale(z[test_ind,])
train_W <- scale(w[train_ind,])
test_W <- scale(w[test_ind,])
train_y <- y[train_ind,]
test_y <- y[test_ind,]
foldid = sample(rep_len(1:10, dim(train_X)[1]))

Benchmarked by the null model:
rho = 0.3
view.contribution(x_list=list(x=train_X,z=train_Z), train_y, rho = rho,

eval_data = 'train', family = gaussian())
view.contribution(x_list=list(x=train_X,z=train_Z), train_y, rho = rho,

eval_data = 'test', family = gaussian(),
x_list_test=list(x=test_X,z=test_Z), test_y=test_y)

50 weighted_mean_sd

Force option -- benchmarked by the model train on a specified list of data views:
view.contribution(x_list=list(x=train_X,z=train_Z,w=train_W), train_y, rho = rho,

eval_data = 'train', family = gaussian(), force=list(x=train_X))

weighted_mean_sd Helper function to compute weighted mean and standard deviation

Description

Helper function to compute weighted mean and standard deviation. Deals gracefully whether x is
sparse matrix or not.

Usage

weighted_mean_sd(x, weights = rep(1, nrow(x)))

Arguments

x Observation matrix.

weights Optional weight vector.

Value

A list with components.

mean vector of weighted means of columns of x

sd vector of weighted standard deviations of columns of x

Index

∗ models
multiview-package, 3
multiview.control, 25

∗ package
multiview-package, 3

∗ regression
multiview-package, 3
multiview.control, 25

coef.cv.multiview, 3
coef.multiview, 4
coef_ordered, 5
coef_ordered.cv.multiview, 6
coef_ordered.multiview, 7
collapse_named_lists, 9
cox_obj_function, 9
cv.multiview, 10

dev_function, 14

elnet.fit, 15

family, 19

get_cox_lambda_max, 17
get_eta, 18
get_start, 19
glmnet::glmnet(), 11, 20, 22, 23, 30, 37

make_row, 20
multiview, 20
multiview-package, 3
multiview.control, 25
multiview.cox.fit, 26
multiview.cox.path, 29
multiview.fit, 33
multiview.path, 36

obj_function, 39

pen_function, 40

plot.multiview, 41
predict.cv.multiview, 42
predict.multiview, 43

reshape_x_to_xlist, 45
response.coxnet, 45

select_matrix_list_columns, 46
stats::family, 11, 21, 34, 37, 48
stats::gaussian, 11, 21, 34, 37, 48
stats::predict(), 22, 30, 37

to_nvar_index, 46
to_xlist_index, 47

view.contribution, 47

weighted_mean_sd, 50

51

	multiview-package
	coef.cv.multiview
	coef.multiview
	coef_ordered
	coef_ordered.cv.multiview
	coef_ordered.multiview
	collapse_named_lists
	cox_obj_function
	cv.multiview
	dev_function
	elnet.fit
	get_cox_lambda_max
	get_eta
	get_start
	make_row
	multiview
	multiview.control
	multiview.cox.fit
	multiview.cox.path
	multiview.fit
	multiview.path
	obj_function
	pen_function
	plot.multiview
	predict.cv.multiview
	predict.multiview
	reshape_x_to_xlist
	response.coxnet
	select_matrix_list_columns
	to_nvar_index
	to_xlist_index
	view.contribution
	weighted_mean_sd
	Index

