Package: conTree 0.3-1

conTree: Contrast Trees and Boosting

Contrast trees represent a new approach for assessing the accuracy of many types of machine learning estimates that are not amenable to standard (cross) validation methods; see "Contrast trees and distribution boosting", Jerome H. Friedman (2020) <doi:10.1073/pnas.1921562117>. In situations where inaccuracies are detected, boosted contrast trees can often improve performance. Functions are provided to to build such trees in addition to a special case, distribution boosting, an assumption free method for estimating the full probability distribution of an outcome variable given any set of joint input predictor variable values.

Authors:Jerome Friedman [aut, cph], Balasubramanian Narasimhan [aut, cre]

conTree_0.3-1.tar.gz
conTree_0.3-1.zip(r-4.5)conTree_0.3-1.zip(r-4.4)conTree_0.3-1.zip(r-4.3)
conTree_0.3-1.tgz(r-4.4-x86_64)conTree_0.3-1.tgz(r-4.4-arm64)conTree_0.3-1.tgz(r-4.3-x86_64)conTree_0.3-1.tgz(r-4.3-arm64)
conTree_0.3-1.tar.gz(r-4.5-noble)conTree_0.3-1.tar.gz(r-4.4-noble)
conTree_0.3-1.tgz(r-4.4-emscripten)conTree_0.3-1.tgz(r-4.3-emscripten)
conTree.pdf |conTree.html
conTree/json (API)
NEWS

# Install 'conTree' in R:
install.packages('conTree', repos = c('https://bnaras.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/bnaras/contree/issues

Datasets:
  • age_data - Age and Demographics data
  • air_quality - Air Quality Data from UC Irvine Machine Learning Repository
  • census - Census Data Example from UC Irvine Machine Learning Repository

On CRAN:

3.95 score 18 scripts 172 downloads 16 exports 0 dependencies

Last updated 1 years agofrom:0b9340f229. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 31 2024
R-4.5-win-x86_64OKOct 31 2024
R-4.5-linux-x86_64OKOct 31 2024
R-4.4-win-x86_64OKOct 31 2024
R-4.4-mac-x86_64OKOct 31 2024
R-4.4-mac-aarch64OKOct 31 2024
R-4.3-win-x86_64OKOct 31 2024
R-4.3-mac-x86_64OKOct 31 2024
R-4.3-mac-aarch64OKOct 31 2024

Exports:bootcricontrastgetnodeslofcurvemodtrastnodeplotsnodesumonesample_parameterspredtrastpruneprune.seqsave_rfuntreesumtwosample_parametersxvalydist

Dependencies:

Contrast and Boosted Trees

Rendered fromcontree.Rmdusingknitr::rmarkdownon Oct 31 2024.

Last update: 2023-06-05
Started: 2020-05-15