Package: conTree 0.3-1
conTree: Contrast Trees and Boosting
Contrast trees represent a new approach for assessing the accuracy of many types of machine learning estimates that are not amenable to standard (cross) validation methods; see "Contrast trees and distribution boosting", Jerome H. Friedman (2020) <doi:10.1073/pnas.1921562117>. In situations where inaccuracies are detected, boosted contrast trees can often improve performance. Functions are provided to to build such trees in addition to a special case, distribution boosting, an assumption free method for estimating the full probability distribution of an outcome variable given any set of joint input predictor variable values.
Authors:
conTree_0.3-1.tar.gz
conTree_0.3-1.zip(r-4.5)conTree_0.3-1.zip(r-4.4)conTree_0.3-1.zip(r-4.3)
conTree_0.3-1.tgz(r-4.4-x86_64)conTree_0.3-1.tgz(r-4.4-arm64)conTree_0.3-1.tgz(r-4.3-x86_64)conTree_0.3-1.tgz(r-4.3-arm64)
conTree_0.3-1.tar.gz(r-4.5-noble)conTree_0.3-1.tar.gz(r-4.4-noble)
conTree_0.3-1.tgz(r-4.4-emscripten)conTree_0.3-1.tgz(r-4.3-emscripten)
conTree.pdf |conTree.html✨
conTree/json (API)
NEWS
# Install 'conTree' in R: |
install.packages('conTree', repos = c('https://bnaras.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/bnaras/contree/issues
- age_data - Age and Demographics data
- air_quality - Air Quality Data from UC Irvine Machine Learning Repository
- census - Census Data Example from UC Irvine Machine Learning Repository
Last updated 1 years agofrom:0b9340f229. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 31 2024 |
R-4.5-win-x86_64 | OK | Oct 31 2024 |
R-4.5-linux-x86_64 | OK | Oct 31 2024 |
R-4.4-win-x86_64 | OK | Oct 31 2024 |
R-4.4-mac-x86_64 | OK | Oct 31 2024 |
R-4.4-mac-aarch64 | OK | Oct 31 2024 |
R-4.3-win-x86_64 | OK | Oct 31 2024 |
R-4.3-mac-x86_64 | OK | Oct 31 2024 |
R-4.3-mac-aarch64 | OK | Oct 31 2024 |
Exports:bootcricontrastgetnodeslofcurvemodtrastnodeplotsnodesumonesample_parameterspredtrastpruneprune.seqsave_rfuntreesumtwosample_parametersxvalydist
Dependencies:
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Contrast and Boosted Trees | conTree-package |
Age and Demographics data | age_data |
Air Quality Data from UC Irvine Machine Learning Repository | air_quality |
Census Data Example from UC Irvine Machine Learning Repository | census |
Build contrast tree | bootcri contrast modtrast |
Get terminal node observation assignments | getnodes |
Produce lack-of-fit curve for a contrast tree | lofcurve |
Summarize contrast tree | nodeplots nodesum |
Return the one sample parameters used in fortran discrepancy functions | onesample_parameters twosample_parameters |
Predict y-values from boosted contrast model | predtrast |
Prune a contrast tree | prune |
Show all possible pruned subtrees | prune.seq |
Save the function f for calling from fortran | save_rfun |
Print terminal node x-region boundaries | treesum |
Cross-validate boosted contrast tree boosted with (new) data | xval |
Transform z-values t(z) such that the distribution of p(t(z) | x) approximates p(t(y | x) for type = 'dist' only | ydist |